阳极
材料科学
电偶阳极
锌
化学工程
电极
水溶液
纳米技术
枝晶(数学)
化学
冶金
有机化学
阴极保护
工程类
物理化学
数学
几何学
作者
Nannan Liu,Xian Wu,Yu Zhang,Yanyou Yin,Chengzhi Sun,Yachun Mao,Lishuang Fan,Naiqing Zhang
标识
DOI:10.1002/advs.202000146
摘要
Aqueous zinc-ion batteries (ZIBs) are an alternative energy storage system for large-scale grid applications compared with lithium-ion batteries, when the low cost, safety, and durability are taken into consideration. However, the reliability of the battery systems always suffers from the serious challenge of the large Zn dendrite formation and "dead Zn," thus bringing out the inferior cycling stability, and even cell shorting. Herein, a dendrite-free organic anode, perylene-3,4,9,10-tetracarboxylic diimide (PTCDI) polymerized on the surface of reduced graphene oxide (PTCDI/rGO) utilized in ZIBs is reported. Moreover, the theoretical calculations prove the reason for the low redox potential. Due to the protons and zinc ions coparticipant phase transfer mechanism and the high charge transfer capability, the PTCDI/rGO electrode provides superior rate capability (121 mA h g-1 at 5000 mA g-1, retaining the 95% capacity of that compared with 50 mA g-1) and a long cycling life span (96% capacity retention after 1500 cycles at 3000 mA g-1). In addition, the proton coparticipation energy storage mechanism of active materials is elucidated by various ex-situ methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI