Machine Learning Predicts Biogeochemistry from Microbial Community Structure in a Complex Model System

微生物种群生物学 生物地球化学循环 群落结构 微生物生态学 生物地球化学 生物反应器 环境科学 生化工程 硫酸盐 微生物代谢 生态学 生物 化学 工程类 细菌 植物 有机化学 遗传学
作者
Avishek Dutta,Thomas Goldman,Jeffrey Keating,Ellen Burke,Nicole Williamson,Reinhard Dirmeier,Jeff S. Bowman
出处
期刊:Microbiology spectrum [American Society for Microbiology]
卷期号:10 (1) 被引量:19
标识
DOI:10.1128/spectrum.01909-21
摘要

Microbial community structure is influenced by the environment and in turn exerts control on many environmental parameters. We applied this concept in a bioreactor study to test whether microbial community structure contains information sufficient to predict the concentration of H2S as the product of sulfate reduction. Microbial sulfate reduction is a major source of H2S in many industrial and environmental systems and is often influenced by the existing physicochemical conditions. Production of H2S in industrial systems leads to occupational hazards and adversely affects the quality of products. A long-term (148 days) experiment was conducted in upflow bioreactors to mimic sulfidogenesis, followed by inhibition with nitrate salts and a resumption of H2S generation when inhibition was released. We determined microbial community structure in 731 samples across 20 bioreactors using 16S rRNA gene sequencing and applied a random forest algorithm to successfully predict different phases of sulfidogenesis and mitigation (accuracy = 93.17%) and sessile and effluent microbial communities (accuracy = 100%). Similarly derived regression models that also included cell abundances were able to predict H2S concentration with remarkably high fidelity (R2 > 0.82). Metabolic profiles based on microbial community structure were also found to be reliable predictors for H2S concentration (R2 = 0.78). These results suggest that microbial community structure contains information sufficient to predict sulfidogenesis in a closed system, with anticipated applications to microbially driven processes in open environments. IMPORTANCE Microbial communities control many biogeochemical processes. Many of these processes are impractical or expensive to measure directly. Because the taxonomic structure of the microbial community is indicative of its function, it encodes information that can be used to predict biogeochemistry. Here, we demonstrate how a machine learning technique can be used to predict sulfidogenesis, a key biogeochemical process in a model system. A distinction of this research was the ability to predict H2S production in a bioreactor from the effluent bacterial community structure without direct observations of the sessile community or other environmental conditions. This study establishes the ability to use machine learning approaches in predicting sulfide concentrations in a closed system, which can be further developed as a valuable tool for predicting biogeochemical processes in open environments. As machine learning algorithms continue to improve, we anticipate increased applications of microbial community structure to predict key environmental and industrial processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一株多肉完成签到,获得积分10
刚刚
Jzhang完成签到,获得积分10
1秒前
完美世界应助潇潇雨歇采纳,获得10
3秒前
qiao应助hh采纳,获得10
4秒前
霸气的小成成完成签到,获得积分10
4秒前
5秒前
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
热心乌完成签到,获得积分0
11秒前
ghy完成签到,获得积分10
11秒前
粥小周发布了新的文献求助10
11秒前
2568269431完成签到 ,获得积分10
17秒前
Hester完成签到,获得积分10
17秒前
罗实完成签到 ,获得积分10
18秒前
搞怪的紫雪完成签到,获得积分10
18秒前
ll发布了新的文献求助30
20秒前
迷人的沛山完成签到 ,获得积分10
20秒前
贾文斌完成签到,获得积分10
21秒前
22秒前
愤怒的之玉完成签到 ,获得积分10
24秒前
梁晓婉完成签到,获得积分10
24秒前
zdx1022完成签到,获得积分10
26秒前
xmz完成签到,获得积分10
28秒前
Haucicy完成签到 ,获得积分10
32秒前
落后的听双完成签到 ,获得积分10
36秒前
李健的小迷弟应助jackycas采纳,获得10
44秒前
1438132306完成签到 ,获得积分10
44秒前
正直的煎饼完成签到,获得积分10
53秒前
59秒前
Jane发布了新的文献求助10
1分钟前
DUANYALI完成签到,获得积分10
1分钟前
王粒完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zzz完成签到,获得积分10
1分钟前
knose完成签到,获得积分10
1分钟前
科目三应助自然代萱采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779759
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10221975
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549