One-step algorithm for fast-track localization and multi-category classification of histological subtypes in lung cancer

医学 肺癌 腺癌 放射科 癌症 核医学 人工智能 病理 内科学 计算机科学
作者
Jing Qi,Zhengqiao Deng,Guogui Sun,Shuang Qian,Li Liu,Bo Xu
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:154: 110443-110443 被引量:18
标识
DOI:10.1016/j.ejrad.2022.110443
摘要

Accumulated evidence has proven that computer-derived features from computed tomography (CT) through radiomics and deep learning technologies can identify extensive characteristics of pulmonary malignancies, such as nodules detection and malignant lesion discrimination. However, there are few studies on whether CT images can reflect histological subtypes of lung cancer through computer-derived features.Contrast-enhanced CT images prior treatment from 417 patients diagnosed with small cell lung cancer (SCLC), lung adenocarcinoma (ADC), or lung squamous cell carcinoma (SCC) were collected. ITK-SNAP software was used by trained radiologists for the manual delineation of tumor volume. Patients of each category (SCLC, ADC, SCC) were then randomly split into training datasets and test datasets in an approximately ratio of 8:2. After image pre-processing and augmentation, 25,042 CT images from the training datasets were used to train our self-developed deep learning model for fast-tracking tumor lesions and classifying corresponding histological subtypes simultaneously. The performance of the network was evaluated by accuracy, F1-score and weighted F1-average using 1,921 testing images based on parameters generated during training.The prediction accuracy of SCLC, ADC, and SCC were 0.83, 0.75 and 0.67, respectively. The weighted F1-average was 0.75. ADC obtained the best F1-score of 0.78, which was outperformed SCLC (0.77) and SCC (0.66). The corresponding AUC values of SCLC, ADC, and SCC were 0.87, 0.84, and 0.76, respectively. Only 0.24 s were required to simultaneously achieve functions of tumor localization and histological classification on a thoracic CT image slice. The heat map visualization illustrated the extracted tumor features to classify subtypes of lung cancer by the proposed model.The newly developed multi-task algorithm provides a CNN-based DL approach in lung cancer for automatically fast-tracking tumor lesions and classifying corresponding histological subtypes in one-step.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
潮汐发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
LewisAcid应助zyh采纳,获得10
刚刚
罗00发布了新的文献求助10
1秒前
lx发布了新的文献求助10
1秒前
Orange应助zouni采纳,获得10
1秒前
茶颜发布了新的文献求助10
1秒前
1秒前
2秒前
wanci应助何必在乎采纳,获得10
3秒前
寒澈完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
ding应助何必在乎采纳,获得10
3秒前
SciGPT应助何必在乎采纳,获得10
3秒前
爆米花应助何必在乎采纳,获得10
4秒前
乐乐应助小蘑菇采纳,获得10
4秒前
Akim应助何必在乎采纳,获得10
4秒前
小马甲应助何必在乎采纳,获得10
4秒前
爆米花应助何必在乎采纳,获得10
4秒前
4秒前
Lucas应助何必在乎采纳,获得10
4秒前
5秒前
bkagyin应助yqward采纳,获得10
6秒前
知非发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
清水完成签到 ,获得积分10
7秒前
8秒前
8秒前
清酒完成签到,获得积分10
8秒前
陈泽宇发布了新的文献求助10
8秒前
sdfasdf完成签到,获得积分10
8秒前
wxy发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
共享精神应助SSNN采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711378
求助须知:如何正确求助?哪些是违规求助? 5203436
关于积分的说明 15264067
捐赠科研通 4863675
什么是DOI,文献DOI怎么找? 2610868
邀请新用户注册赠送积分活动 1561184
关于科研通互助平台的介绍 1518621