One-step algorithm for fast-track localization and multi-category classification of histological subtypes in lung cancer

医学 肺癌 腺癌 放射科 癌症 核医学 人工智能 病理 内科学 计算机科学
作者
Jing Qi,Zhengqiao Deng,Guogui Sun,Shuang Qian,Li Liu,Bo Xu
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:154: 110443-110443 被引量:12
标识
DOI:10.1016/j.ejrad.2022.110443
摘要

Accumulated evidence has proven that computer-derived features from computed tomography (CT) through radiomics and deep learning technologies can identify extensive characteristics of pulmonary malignancies, such as nodules detection and malignant lesion discrimination. However, there are few studies on whether CT images can reflect histological subtypes of lung cancer through computer-derived features.Contrast-enhanced CT images prior treatment from 417 patients diagnosed with small cell lung cancer (SCLC), lung adenocarcinoma (ADC), or lung squamous cell carcinoma (SCC) were collected. ITK-SNAP software was used by trained radiologists for the manual delineation of tumor volume. Patients of each category (SCLC, ADC, SCC) were then randomly split into training datasets and test datasets in an approximately ratio of 8:2. After image pre-processing and augmentation, 25,042 CT images from the training datasets were used to train our self-developed deep learning model for fast-tracking tumor lesions and classifying corresponding histological subtypes simultaneously. The performance of the network was evaluated by accuracy, F1-score and weighted F1-average using 1,921 testing images based on parameters generated during training.The prediction accuracy of SCLC, ADC, and SCC were 0.83, 0.75 and 0.67, respectively. The weighted F1-average was 0.75. ADC obtained the best F1-score of 0.78, which was outperformed SCLC (0.77) and SCC (0.66). The corresponding AUC values of SCLC, ADC, and SCC were 0.87, 0.84, and 0.76, respectively. Only 0.24 s were required to simultaneously achieve functions of tumor localization and histological classification on a thoracic CT image slice. The heat map visualization illustrated the extracted tumor features to classify subtypes of lung cancer by the proposed model.The newly developed multi-task algorithm provides a CNN-based DL approach in lung cancer for automatically fast-tracking tumor lesions and classifying corresponding histological subtypes in one-step.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海绵小方块完成签到,获得积分10
1秒前
1秒前
阿泽完成签到 ,获得积分10
5秒前
surain完成签到,获得积分10
5秒前
所所应助lin采纳,获得10
6秒前
6秒前
汉堡包应助qq采纳,获得10
6秒前
guoguo完成签到,获得积分20
6秒前
殊桐完成签到,获得积分10
7秒前
8秒前
略略略完成签到,获得积分10
8秒前
10秒前
sadascaqwqw完成签到 ,获得积分10
10秒前
orixero应助多肉葡萄采纳,获得10
10秒前
时光宝石一次完成签到,获得积分10
11秒前
科研通AI5应助阿景采纳,获得10
11秒前
Johnlian完成签到 ,获得积分10
11秒前
12秒前
13秒前
牛阳雨发布了新的文献求助10
13秒前
13秒前
大气沛容完成签到,获得积分10
14秒前
14秒前
JamesPei应助FeversKim采纳,获得10
14秒前
14秒前
晚灯君完成签到 ,获得积分10
15秒前
田所浩二完成签到 ,获得积分10
15秒前
15秒前
16秒前
福同学完成签到,获得积分10
17秒前
17秒前
跳跃的邪欢完成签到,获得积分10
17秒前
Claire关注了科研通微信公众号
18秒前
晓峰完成签到,获得积分10
18秒前
齐静春发布了新的文献求助10
18秒前
curtainai完成签到,获得积分10
18秒前
20秒前
20秒前
技术的不能发表完成签到 ,获得积分10
20秒前
Owen应助曾经不言采纳,获得10
20秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825282
求助须知:如何正确求助?哪些是违规求助? 3367593
关于积分的说明 10446446
捐赠科研通 3086915
什么是DOI,文献DOI怎么找? 1698354
邀请新用户注册赠送积分活动 816717
科研通“疑难数据库(出版商)”最低求助积分说明 769937