Deep-Learning-Based Small Surface Defect Detection via an Exaggerated Local Variation-Based Generative Adversarial Network

人工智能 计算机科学 生成对抗网络 卷积神经网络 变化(天文学) 模式识别(心理学) 正规化(语言学) 图像(数学) 生成语法 深度学习 对抗制 曲面(拓扑) 机器学习 计算机视觉 数学 物理 天体物理学 几何学
作者
Jian Lian,Weikuan Jia,Masoumeh Zareapoor,Yuanjie Zheng,Rong Luo,Deepak Kumar Jain,Neeraj Kumar
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (2): 1343-1351 被引量:110
标识
DOI:10.1109/tii.2019.2945403
摘要

Surface detection of small defects plays a vital role in manufacturing and has attracted broad interest. It remains challenging primarily due to the small size of the defect relative to the large surface and the rare occurrence of defects. To address this problem, in this article we propose a novel machine vision approach for automatically identifying the tiny flaws that may appear in a single image. First, the presented defect exaggeration approach produces both the flawless image and the corresponding exaggerated version of the defect by taking the variations in the image as regularization terms. Second, a generative adversarial network (GAN) in conjunction with a convolutional neural network (CNN) is proposed to guarantee the accuracy of tiny surface defect detection by producing exaggerated defect image samples. Furthermore, the limited dataset of the training samples for defect detection is enlarged by exploiting the GAN technique with the variation exaggerated images. To evaluate the performance of our proposed method, we conduct comparison experiments between the state-of-the-art techniques with and without the proposed algorithm as well as comparison experiments between the state-of-the-art techniques and our method. The experimental results on different types of surface image samples demonstrate that the proposed method can significantly improve the performance of the state-of-the-art approaches while achieving a defect detection accuracy of 99.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限的小懒虫完成签到,获得积分10
刚刚
Owen应助Rashalin采纳,获得10
1秒前
hhl完成签到,获得积分10
1秒前
vava完成签到,获得积分10
1秒前
1秒前
洁净灭男完成签到,获得积分10
2秒前
嘻嘻哈哈应助善良衬衫采纳,获得10
2秒前
可爱的豆芽完成签到,获得积分10
2秒前
3秒前
科研人完成签到,获得积分10
4秒前
tomf完成签到,获得积分10
4秒前
冷傲忆彤完成签到 ,获得积分10
5秒前
5秒前
罗尧完成签到 ,获得积分10
5秒前
CipherSage应助坦率的电灯胆采纳,获得10
5秒前
燕子完成签到,获得积分10
5秒前
bae完成签到 ,获得积分10
5秒前
6秒前
秦尔晗发布了新的文献求助10
6秒前
6秒前
7秒前
研友_24789完成签到,获得积分10
7秒前
雪雨夜心完成签到,获得积分10
7秒前
7秒前
怕热除铁完成签到,获得积分10
8秒前
LuckyMM完成签到 ,获得积分10
9秒前
彪壮的雪晴完成签到,获得积分20
9秒前
LILI发布了新的文献求助10
9秒前
9秒前
飞快的盼易完成签到,获得积分10
9秒前
ffrrss完成签到,获得积分10
9秒前
10秒前
10秒前
淡定的安白完成签到,获得积分10
10秒前
Snowy完成签到,获得积分10
10秒前
HU完成签到,获得积分10
10秒前
jhcraul完成签到,获得积分10
11秒前
香飘飘发布了新的文献求助30
11秒前
貔貅完成签到,获得积分10
11秒前
Jasper应助lsy采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427026
求助须知:如何正确求助?哪些是违规求助? 4540594
关于积分的说明 14172844
捐赠科研通 4458544
什么是DOI,文献DOI怎么找? 2445051
邀请新用户注册赠送积分活动 1436111
关于科研通互助平台的介绍 1413646