Transferable non-invasive modal fusion-transformer (NIMFT) for end-to-end hand gesture recognition

计算机科学 人工智能 变压器 学习迁移 嵌入 模式识别(心理学) 卷积神经网络 特征提取 语音识别 情态动词 工程类 电压 电气工程 化学 高分子化学
作者
Tianxiang Xu,Kunkun Zhao,Yuxiang Hu,Liang Li,Wei Wang,Fulin Wang,Yuxuan Zhou,Jianqing Li
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (2): 026034-026034 被引量:6
标识
DOI:10.1088/1741-2552/ad39a5
摘要

Abstract Objective. Recent studies have shown that integrating inertial measurement unit (IMU) signals with surface electromyographic (sEMG) can greatly improve hand gesture recognition (HGR) performance in applications such as prosthetic control and rehabilitation training. However, current deep learning models for multimodal HGR encounter difficulties in invasive modal fusion, complex feature extraction from heterogeneous signals, and limited inter-subject model generalization. To address these challenges, this study aims to develop an end-to-end and inter-subject transferable model that utilizes non-invasively fused sEMG and acceleration (ACC) data. Approach. The proposed non-invasive modal fusion-transformer (NIMFT) model utilizes 1D-convolutional neural networks-based patch embedding for local information extraction and employs a multi-head cross-attention (MCA) mechanism to non-invasively integrate sEMG and ACC signals, stabilizing the variability induced by sEMG. The proposed architecture undergoes detailed ablation studies after hyperparameter tuning. Transfer learning is employed by fine-tuning a pre-trained model on new subject and a comparative analysis is performed between the fine-tuning and subject-specific model. Additionally, the performance of NIMFT is compared to state-of-the-art fusion models. Main results. The NIMFT model achieved recognition accuracies of 93.91%, 91.02%, and 95.56% on the three action sets in the Ninapro DB2 dataset. The proposed embedding method and MCA outperformed the traditional invasive modal fusion transformer by 2.01% (embedding) and 1.23% (fusion), respectively. In comparison to subject-specific models, the fine-tuning model exhibited the highest average accuracy improvement of 2.26%, achieving a final accuracy of 96.13%. Moreover, the NIMFT model demonstrated superiority in terms of accuracy, recall, precision, and F1-score compared to the latest modal fusion models with similar model scale. Significance. The NIMFT is a novel end-to-end HGR model, utilizes a non-invasive MCA mechanism to integrate long-range intermodal information effectively. Compared to recent modal fusion models, it demonstrates superior performance in inter-subject experiments and offers higher training efficiency and accuracy levels through transfer learning than subject-specific approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
shell完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
disjustar完成签到,获得积分0
2秒前
3秒前
干雅柏发布了新的文献求助10
3秒前
3秒前
4秒前
枸杞炖银耳完成签到,获得积分20
4秒前
杰瑞发布了新的文献求助10
4秒前
科研通AI6应助合适依秋采纳,获得10
5秒前
5秒前
脑洞疼应助QW111采纳,获得10
5秒前
5秒前
晴qq发布了新的文献求助10
6秒前
CCrain完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
大只00发布了新的文献求助10
7秒前
马牛发布了新的文献求助30
8秒前
8秒前
8秒前
科研通AI6应助快乐湘采纳,获得10
9秒前
等待从阳发布了新的文献求助10
9秒前
英俊的铭应助崔大冠采纳,获得10
10秒前
XYYX发布了新的文献求助10
10秒前
玛卡巴卡发布了新的文献求助10
10秒前
cc发布了新的文献求助10
11秒前
11秒前
11秒前
小二郎应助内秀采纳,获得10
12秒前
随便发布了新的文献求助10
13秒前
Zyj发布了新的文献求助10
14秒前
xxfsx应助zzb采纳,获得20
15秒前
脑洞疼应助kingwill采纳,获得30
15秒前
修仙中应助郑瑞丰采纳,获得20
15秒前
Orange应助顺心的元正采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708