Reference-Aware Adaptive Network for Image-Text Matching

计算机科学 人工智能 图像(数学) 计算机视觉 图像处理 匹配(统计) 模式识别(心理学) 数学 统计
作者
Guoxin Xiong,Meng Meng,Tianzhu Zhang,Dongming Zhang,Yongdong Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 9678-9691
标识
DOI:10.1109/tcsvt.2024.3392619
摘要

Image-text matching aims to bridge vision and language areas, which is a crucial task in multi-modal intelligence. The core idea is to learn features of each modality and aggregate learned features as holistic representations to measure image-text relevance. Most existing methods involve cross-modal interaction during feature learning by modeling fine-grained relationships between two modalities for better results. However, these methods may obtain wrong attention scores when directly computing similarities between regions and words. Besides, current methods mainly rely on simple pooling operations for feature aggregation, which introduces interference from redundant information, resulting in inaccurate matching results. To alleviate these issues, we propose a novel reference-aware adaptive network for image-text matching by jointly using a reference attention module for feature learning and an adaptive aggregation module for feature aggregation. The proposed model enjoys several merits. First, the designed reference attention module effectively reduces wrong attention scores by introducing a set of references during cross-modal interaction. Second, the proposed adaptive aggregation module highlights useful information adaptively while suppressing redundant information during aggregation. Extensive experiments on two standard benchmarks demonstrate that our method performs favorably against state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
1秒前
duizhang发布了新的文献求助10
1秒前
共享精神应助赫连紫采纳,获得10
1秒前
威武蜜蜂发布了新的文献求助10
1秒前
Grace完成签到,获得积分10
1秒前
yl完成签到,获得积分10
2秒前
skoch发布了新的文献求助10
2秒前
科研通AI5应助芋泥啵啵采纳,获得10
2秒前
3秒前
张惠完成签到,获得积分10
3秒前
She完成签到,获得积分20
3秒前
慕青应助务实的语风采纳,获得10
3秒前
3秒前
3秒前
4秒前
科目三应助hao采纳,获得10
4秒前
lull发布了新的文献求助10
4秒前
菌菇发布了新的文献求助10
5秒前
Akim应助ryan采纳,获得10
5秒前
克泷完成签到 ,获得积分10
5秒前
跳跃的惮发布了新的文献求助10
5秒前
5秒前
念兹在兹完成签到,获得积分10
5秒前
情怀应助不潮不用花钱采纳,获得10
5秒前
5秒前
5秒前
无花果应助b_wasky采纳,获得10
6秒前
6秒前
6秒前
A1len发布了新的文献求助10
6秒前
执着的仇血完成签到,获得积分10
7秒前
cp1690完成签到,获得积分10
7秒前
坦率大米完成签到,获得积分10
7秒前
慢慢完成签到,获得积分10
7秒前
打打应助赵田采纳,获得10
8秒前
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868