The influence of demographic structure on residential buildings' carbon emissions in China

中国 温室气体 环境科学 建筑工程 地理 工程类 生态学 考古 生物
作者
Liu Chen,Kairui You,Gengpei Lv,Weiguang Cai,Jinbo Zhang,Yang Zhang
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:87: 108951-108951 被引量:6
标识
DOI:10.1016/j.jobe.2024.108951
摘要

In the process of advancing China's carbon peak strategy, the residential building is a crucial sector for carbon mitigation. The energy demand for residential buildings, which is dominated by household consumption, is rapidly rising; coping with aging crisis and reducing carbon dioxide (CO2) emissions are two major challenges facing China. This study explores the complex relation between demographic structure and residential buildings' CO2 emissions, and then simulates the future carbon peaking trajectory based on scenario prediction model. The relevant results are fourfold. 1) The overall coupling coordination degree of demographic structure and residential buildings' CO2 emissions in China has entered the optimal state (i.e. high-quality coordination level) until 2020. 2) The increased household size and proportion of children population from 2010 to 2020 had an inhibitory effect on residential buildings' CO2 emissions, whereas increased population size and proportion of elderly population had a promotional effect. 3) Under the influence of demographic structure change, peak residential buildings' CO2 emissions are predicted to be delayed from 2030 to 2032 in China, and the peak value will increase by 3.56%, reaching 1.527 billion tons. 4) At the provincial degree, under the baseline scenario, Beijing will be the first to achieve peak CO2 emissions in 2026; under the aging scenario, Yunnan and Beijing will be the first to reach peak CO2 emissions in 2028. This study provides a reference for Chinese policymakers and other countries to incorporate demographic structure into future projections to advance carbon reduction targets' achievement in the building sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
Costing完成签到 ,获得积分10
2秒前
大个应助梁业采纳,获得10
4秒前
今后应助miku1采纳,获得10
4秒前
沐沐心完成签到 ,获得积分10
5秒前
5秒前
7秒前
7秒前
7秒前
9秒前
PA发布了新的文献求助10
9秒前
Akim应助现实的机器猫采纳,获得10
9秒前
pu66发布了新的文献求助10
11秒前
淡然发布了新的文献求助10
12秒前
hjkk完成签到,获得积分10
13秒前
15秒前
酷波er应助wuchun采纳,获得10
15秒前
15秒前
能干妙竹完成签到,获得积分10
15秒前
15秒前
情怀应助parpate采纳,获得10
15秒前
Yolo完成签到,获得积分10
16秒前
17秒前
17秒前
收手吧大哥应助。。。采纳,获得10
18秒前
Lucas应助pu66采纳,获得10
19秒前
19秒前
orixero应助勤劳的冰菱采纳,获得10
20秒前
20秒前
毓秀完成签到 ,获得积分10
22秒前
miku1发布了新的文献求助10
22秒前
22秒前
23秒前
席凡桃发布了新的文献求助10
23秒前
小马甲应助洁净的易巧采纳,获得10
25秒前
parpate发布了新的文献求助10
26秒前
哈哈完成签到 ,获得积分10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843681
求助须知:如何正确求助?哪些是违规求助? 3385989
关于积分的说明 10543401
捐赠科研通 3106790
什么是DOI,文献DOI怎么找? 1711162
邀请新用户注册赠送积分活动 823937
科研通“疑难数据库(出版商)”最低求助积分说明 774390