A hybrid 1D CNN-BiLSTM model for epileptic seizure detection using multichannel EEG feature fusion

发作性 计算机科学 模式识别(心理学) 人工智能 脑电图 卷积神经网络 预处理器 癫痫 特征(语言学) 特征提取 深度学习 水准点(测量) 癫痫发作 神经科学 心理学 语言学 哲学 大地测量学 地理
作者
Swathy Ravi,Ashalatha Radhakrishnan
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (3): 035040-035040 被引量:3
标识
DOI:10.1088/2057-1976/ad3afd
摘要

Abstract Epilepsy, a chronic non-communicable disease is characterized by repeated unprovoked seizures, which are transient episodes of abnormal electrical activity in the brain. While Electroencephalography (EEG) is considered as the gold standard for diagnosis in current clinical practice, manual inspection of EEG is time consuming and biased. This paper presents a novel hybrid 1D CNN-Bi LSTM feature fusion model for automatically detecting seizures. The proposed model leverages spatial features extracted by one dimensional convolutional neural network and temporal features extracted by bi directional long short-term memory network. Ictal and inter ictal data is first acquired from the long multichannel EEG record. The acquired data is segmented and labelled using small fixed windows. Signal features are then extracted from the segments concurrently by the parallel combination of CNN and Bi-LSTM. The spatial and temporal features thus captured are then fused to enhance classification accuracy of model. The approach is validated using benchmark CHB-MIT dataset and 5-fold cross validation which resulted in an average accuracy of 95.90%, with precision 94.78%, F1 score 95.95%. Notably model achieved average sensitivity of 97.18% with false positivity rate at 0.05/hr. The significantly lower false positivity and false negativity rates indicate that the proposed model is a promising tool for detecting seizures in epilepsy patients. The employed parallel path network benefits from memory function of Bi-LSTM and strong feature extraction capabilities of CNN. Moreover, eliminating the need for any domain transformation or additional preprocessing steps, model effectively reduces complexity and enhances efficiency, making it suitable for use by clinicians during the epilepsy diagnostic process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ayan发布了新的文献求助10
1秒前
1秒前
1秒前
葡萄成熟发布了新的文献求助10
1秒前
李昆朋完成签到,获得积分10
1秒前
Jasper应助Wangyn采纳,获得10
2秒前
lm完成签到,获得积分10
2秒前
化学天空完成签到,获得积分10
2秒前
xiying发布了新的文献求助10
2秒前
2秒前
XS_QI发布了新的文献求助10
2秒前
科研通AI5应助旺仔采纳,获得10
3秒前
3秒前
金不换发布了新的文献求助10
3秒前
刻苦的青文完成签到,获得积分10
3秒前
Ricardo完成签到 ,获得积分10
3秒前
田様应助Cindy采纳,获得10
4秒前
4秒前
也许完成签到,获得积分10
4秒前
邵邵发布了新的文献求助10
6秒前
1024发布了新的文献求助10
6秒前
深情安青应助ygg采纳,获得10
6秒前
20231125完成签到,获得积分10
6秒前
7秒前
故意的成危完成签到,获得积分20
7秒前
8秒前
葡萄成熟完成签到,获得积分10
8秒前
fnufhus发布了新的文献求助10
9秒前
动听锦程完成签到,获得积分10
9秒前
程雯慧发布了新的文献求助10
10秒前
M二以发布了新的文献求助10
10秒前
小妞妞完成签到,获得积分10
10秒前
10秒前
小稀完成签到,获得积分10
10秒前
Shuhe_Gong完成签到 ,获得积分10
10秒前
结实曼凡完成签到 ,获得积分10
11秒前
平常水卉发布了新的文献求助10
11秒前
迷人乐驹发布了新的文献求助10
12秒前
田様应助宫野珏采纳,获得10
12秒前
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785297
求助须知:如何正确求助?哪些是违规求助? 3330886
关于积分的说明 10248776
捐赠科研通 3046307
什么是DOI,文献DOI怎么找? 1671979
邀请新用户注册赠送积分活动 800924
科研通“疑难数据库(出版商)”最低求助积分说明 759881