已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lensless Imaging Based on Dual‐Input Physics‐Driven Neural Network

对偶(语法数字) 人工神经网络 物理 计算机科学 人工智能 哲学 语言学
作者
Jiale Zuo,Ju Tang,Mengmeng Zhang,Jiawei Zhang,Zhenbo Ren,Jianglei Di,Jianlin Zhao
出处
期刊:Advanced photonics research [Wiley]
卷期号:5 (11) 被引量:2
标识
DOI:10.1002/adpr.202400029
摘要

Lensless imaging, as a novel computational imaging technique, has attracted great attention due to its simplicity, compactness, and flexibility. This technique analyzes and processes the diffraction of an object to obtain complex amplitude information. However, traditional algorithms such as Gerchberg‐Saxton (G–S) algorithm tend to exhibit significant errors in complex amplitude retrieval, particularly for edge information. Additional constraints have to be incorporated on top of amplitude constraints to enhance the accuracy. Recently, deep learning has shown promising results in optical imaging. However, it requires a large amount of training data. To address these issues, a novel approach called dual‐input physics‐driven network (DPNN) is proposed for lensless imaging. DPNN utilizes two diffractions recorded at different distances as inputs and uses an unsupervised approach that combines physical imaging model to reconstruct object information. DPNN adopts a U‐Net 3+ architecture with a loss function of mean absolute error (MAE) to better capture diffraction features. DPNN achieves highly accurate reconstruction without requiring extensive data and being immune to background noise. Based on different diffraction intervals, noise levels, and imaging models, DPNN exhibits superior capabilities in peak signal‐to‐noise ratio and structural similarity compared with conventional methods, effectively achieving accurate phase or amplitude information reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
candybear完成签到,获得积分20
1秒前
呼延水云发布了新的文献求助10
2秒前
3秒前
xx关闭了xx文献求助
3秒前
小马甲应助塔莉娅采纳,获得10
4秒前
小黄完成签到 ,获得积分10
5秒前
搜集达人应助哈哈哈哈采纳,获得10
5秒前
小刘哥儿发布了新的文献求助10
7秒前
李萌发布了新的文献求助10
7秒前
Chichi完成签到,获得积分20
8秒前
Lucas应助million采纳,获得10
8秒前
9秒前
9秒前
领导范儿应助you采纳,获得10
11秒前
ppppp完成签到,获得积分10
11秒前
多看文献完成签到,获得积分10
13秒前
研友_VZG7GZ应助candybear采纳,获得10
14秒前
充电宝应助QAQ采纳,获得10
15秒前
15秒前
梁33发布了新的文献求助10
15秒前
Wanfeng应助夏小胖采纳,获得200
17秒前
朝气完成签到,获得积分10
18秒前
18秒前
19秒前
慕青应助Su采纳,获得10
20秒前
20秒前
塔莉娅发布了新的文献求助10
20秒前
小刘哥儿完成签到,获得积分10
22秒前
善学以致用应助古猫宁采纳,获得10
23秒前
23秒前
南星完成签到 ,获得积分10
23秒前
Kaelin完成签到,获得积分10
24秒前
唐文硕发布了新的文献求助10
26秒前
26秒前
小二郎应助Cytheria采纳,获得10
29秒前
苹果蜗牛发布了新的文献求助10
29秒前
30秒前
niuge02完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542593
求助须知:如何正确求助?哪些是违规求助? 4628845
关于积分的说明 14609954
捐赠科研通 4569949
什么是DOI,文献DOI怎么找? 2505534
邀请新用户注册赠送积分活动 1482882
关于科研通互助平台的介绍 1454215