已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BrainMass: Advancing Brain Network Analysis for Diagnosis with Large-scale Self-Supervised Learning

计算机科学 人工智能 比例(比率) 机器学习 量子力学 物理
作者
Yanwu Yang,Chenfei Ye,Guinan Su,Ziyao Zhang,Zhikai Chang,Hairui Chen,Piu Chan,Yue Yu,Ting Ma
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:5
标识
DOI:10.1109/tmi.2024.3414476
摘要

Foundation models pretrained on large-scale datasets via self-supervised learning demonstrate exceptional versatility across various tasks. Due to the heterogeneity and hard-to-collect medical data, this approach is especially beneficial for medical image analysis and neuroscience research, as it streamlines broad downstream tasks without the need for numerous costly annotations. However, there has been limited investigation into brain network foundation models, limiting their adaptability and generalizability for broad neuroscience studies. In this study, we aim to bridge this gap. In particular, (1) we curated a comprehensive dataset by collating images from 30 datasets, which comprises 70,781 samples of 46,686 participants. Moreover, we introduce pseudo-functional connectivity (pFC) to further generates millions of augmented brain networks by randomly dropping certain timepoints of the BOLD signal. (2) We propose the BrainMass framework for brain network self-supervised learning via mask modeling and feature alignment. BrainMass employs Mask-ROI Modeling (MRM) to bolster intra-network dependencies and regional specificity. Furthermore, Latent Representation Alignment (LRA) module is utilized to regularize augmented brain networks of the same participant with similar topological properties to yield similar latent representations by aligning their latent embeddings. Extensive experiments on eight internal tasks and seven external brain disorder diagnosis tasks show BrainMass's superior performance, highlighting its significant generalizability and adaptability. Nonetheless, BrainMass demonstrates powerful few/zero-shot learning abilities and exhibits meaningful interpretation to various diseases, showcasing its potential use for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC发布了新的文献求助30
刚刚
Erling完成签到,获得积分10
刚刚
小孙完成签到,获得积分10
1秒前
zffang完成签到,获得积分10
3秒前
3秒前
5秒前
几两完成签到 ,获得积分10
6秒前
7秒前
7秒前
paradox完成签到 ,获得积分10
8秒前
耶耶发布了新的文献求助30
8秒前
AZN完成签到 ,获得积分10
9秒前
碗碗完成签到,获得积分10
9秒前
自由小萱完成签到,获得积分10
10秒前
haohaohao发布了新的文献求助10
11秒前
zffang发布了新的文献求助10
12秒前
牛超完成签到 ,获得积分10
12秒前
橙橙发布了新的文献求助30
13秒前
稳重岩完成签到 ,获得积分10
13秒前
15秒前
哈基米德应助科研通管家采纳,获得20
16秒前
Ak完成签到,获得积分0
16秒前
Owen应助科研通管家采纳,获得30
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
17秒前
GingerF应助科研通管家采纳,获得50
17秒前
哈基米德应助科研通管家采纳,获得20
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
哈基米德应助科研通管家采纳,获得20
17秒前
Criminology34应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
小蘑菇应助qianqina采纳,获得10
18秒前
感动手链完成签到,获得积分10
20秒前
555完成签到,获得积分10
22秒前
Fxy完成签到 ,获得积分10
23秒前
挚智完成签到 ,获得积分10
25秒前
26秒前
haohaohao完成签到,获得积分10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386