L-VSM: Label-Driven View-Specific Fusion for Multiview Multilabel Classification

人工智能 计算机科学 图形 子空间拓扑 特征学习 特征(语言学) 分类器(UML) 模式识别(心理学) 机器学习 理论计算机科学 哲学 语言学
作者
Gengyu Lyu,Zhen Yang,Xiang Deng,Songhe Feng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (4): 6569-6583 被引量:3
标识
DOI:10.1109/tnnls.2024.3390776
摘要

In the task of multiview multilabel (MVML) classification, each instance is represented by several heterogeneous features and associated with multiple semantic labels. Existing MVML methods mainly focus on leveraging the shared subspace to comprehensively explore multiview consensus information across different views, while it is still an open problem whether such shared subspace representation is effective to characterize all relevant labels when formulating a desired MVML model. In this article, we propose a novel label-driven view-specific fusion MVML method named L-VSM, which bypasses seeking for a shared subspace representation and instead directly encodes the feature representation of each individual view to contribute to the final multilabel classifier induction. Specifically, we first design a label-driven feature graph construction strategy and construct all instances under various feature representations into the corresponding feature graphs. Then, these view-specific feature graphs are integrated into a unified graph by linking the different feature representations within each instance. Afterward, we adopt a graph attention mechanism to aggregate and update all feature nodes on the unified graph to generate structural representations for each instance, where both intraview correlations and interview alignments are jointly encoded to discover the underlying consensuses and complementarities across different views. Moreover, to explore the widespread label correlations in multilabel learning (MLL), the transformer architecture is introduced to construct a dynamic semantic-aware label graph and accordingly generate structural semantic representations for each specific class. Finally, we derive an instance-label affinity score for each instance by averaging the affinity scores of its different feature representations with the multilabel soft margin loss. Extensive experiments on various MVML applications have verified that our proposed L-VSM has achieved superior performance against state-of-the-art methods. The codes are available at https://gengyulyu.github.io/homepage/assets/codes/LVSM.zip.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长情靖雁发布了新的文献求助10
1秒前
2秒前
小二发布了新的文献求助10
2秒前
追寻的大米完成签到,获得积分20
2秒前
义气完成签到 ,获得积分10
3秒前
3秒前
6秒前
6秒前
梁海萍发布了新的文献求助10
6秒前
7秒前
追风完成签到,获得积分10
8秒前
Isabel完成签到 ,获得积分10
9秒前
瓜瓜发布了新的文献求助20
10秒前
chrysophoron发布了新的文献求助10
12秒前
科研混子完成签到,获得积分10
14秒前
清颜发布了新的文献求助10
16秒前
18秒前
浮游应助vchen0621采纳,获得10
18秒前
18秒前
1111完成签到 ,获得积分10
19秒前
19秒前
20秒前
无语完成签到,获得积分10
20秒前
21秒前
丘比特应助瓜瓜采纳,获得10
21秒前
卡皮巴拉完成签到 ,获得积分10
21秒前
22秒前
胡兴发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
王路发布了新的文献求助10
24秒前
chen发布了新的文献求助10
24秒前
科研通AI5应助Estrella采纳,获得10
25秒前
25秒前
卡卡西西西完成签到,获得积分10
26秒前
jasmine发布了新的文献求助10
27秒前
糖家未央发布了新的文献求助10
29秒前
无花果应助卡卡西西西采纳,获得10
29秒前
29秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208359
求助须知:如何正确求助?哪些是违规求助? 4385928
关于积分的说明 13659138
捐赠科研通 4244820
什么是DOI,文献DOI怎么找? 2328952
邀请新用户注册赠送积分活动 1326741
关于科研通互助平台的介绍 1278980