SUNDEW: A Case-Sensitive Detection Engine to Counter Malware Diversity

恶意软件 多样性(政治) 计算机科学 操作系统 社会学 人类学
作者
Sareena Karapoola,Nikhilesh Singh,Chester Rebeiro,V. Kamakoti
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:22 (1): 518-533 被引量:3
标识
DOI:10.1109/tdsc.2024.3406699
摘要

Malware programs are diverse, with varying objectives, functionalities, and threat levels ranging from mere pop-ups to significant financial losses. Consequently, their run-time footprints across the system differ, impacting the optimal data source (Network, Operating system (OS), Hardware) and features that are instrumental to malware detection. Further, the variations in threat levels of malware classes affect the user policies for detection. Thus, the optimal tuple of $\langle \tt data$ - $\tt source$ , $\tt features$ , $\tt user$ - $\tt policies \rangle$ , determined experimentally, is different for each malware class, impacting the state-of-the-art detection solutions that are agnostic to these subtle differences. This paper presents ${\sf SUNDEW}$ , a framework to detect malware classes using the corresponding optimal tuple of $\langle \tt data$ - $\tt source$ , $\tt features$ , $\tt user$ - $\tt policies \rangle$ . ${\sf SUNDEW}$ uses an ensemble of specialized predictors, each trained with a particular data source (network, OS, and hardware) and tuned for features and policies of a specific class. While the specialized ensemble with a holistic view across the system improves detection, aggregating the independent conflicting inferences from the different predictors is challenging. ${\sf SUNDEW}$ resolves such conflicts with a hierarchical aggregation considering the threat-level, noise in the data sources, and prior domain knowledge. We evaluate ${\sf SUNDEW}$ on a real-world dataset of over 10,000 malware samples from 8 classes. It achieves an F1-Score of one for most classes, with an average of 0.93, and has a limited performance overhead of 1.5%. Our experiments on a common multi-featured dataset show that ${\sf SUNDEW}$ is 10% more accurate, with 89% lower false positives, than prior state-of-the-art predictors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
派大星完成签到,获得积分10
1秒前
1秒前
立军完成签到,获得积分10
1秒前
五條小羊发布了新的文献求助10
2秒前
燕真完成签到,获得积分10
2秒前
Eager发布了新的文献求助10
3秒前
meant发布了新的文献求助10
3秒前
weizheng完成签到,获得积分0
4秒前
刘星宇完成签到,获得积分10
4秒前
xtt121完成签到,获得积分10
4秒前
4秒前
zhonglv7应助sangsang采纳,获得10
5秒前
张薇完成签到,获得积分10
5秒前
王东完成签到,获得积分10
6秒前
西瓜发布了新的文献求助10
6秒前
6秒前
离希夷完成签到,获得积分10
7秒前
吕吕发布了新的文献求助10
8秒前
9秒前
大个应助种草采纳,获得10
9秒前
10秒前
小星发布了新的文献求助10
10秒前
所所应助小白术采纳,获得10
13秒前
Hilda007应助苍蓝所栖采纳,获得10
14秒前
14秒前
打打应助LCX采纳,获得10
15秒前
打打应助1111采纳,获得10
15秒前
zjy123完成签到,获得积分10
16秒前
骆闻发布了新的文献求助10
17秒前
冰火完成签到,获得积分10
17秒前
19秒前
lyb发布了新的文献求助10
19秒前
优娜发布了新的文献求助10
20秒前
Zqq完成签到,获得积分10
20秒前
guajiguaji完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
在水一方应助杨苗苗采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287232
求助须知:如何正确求助?哪些是违规求助? 4439680
关于积分的说明 13822419
捐赠科研通 4321690
什么是DOI,文献DOI怎么找? 2372100
邀请新用户注册赠送积分活动 1367648
关于科研通互助平台的介绍 1331104