SUNDEW: A Case-Sensitive Detection Engine to Counter Malware Diversity

恶意软件 多样性(政治) 计算机科学 操作系统 社会学 人类学
作者
Sareena Karapoola,Nikhilesh Singh,Chester Rebeiro,V. Kamakoti
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:22 (1): 518-533 被引量:3
标识
DOI:10.1109/tdsc.2024.3406699
摘要

Malware programs are diverse, with varying objectives, functionalities, and threat levels ranging from mere pop-ups to significant financial losses. Consequently, their run-time footprints across the system differ, impacting the optimal data source (Network, Operating system (OS), Hardware) and features that are instrumental to malware detection. Further, the variations in threat levels of malware classes affect the user policies for detection. Thus, the optimal tuple of $\langle \tt data$ - $\tt source$ , $\tt features$ , $\tt user$ - $\tt policies \rangle$ , determined experimentally, is different for each malware class, impacting the state-of-the-art detection solutions that are agnostic to these subtle differences. This paper presents ${\sf SUNDEW}$ , a framework to detect malware classes using the corresponding optimal tuple of $\langle \tt data$ - $\tt source$ , $\tt features$ , $\tt user$ - $\tt policies \rangle$ . ${\sf SUNDEW}$ uses an ensemble of specialized predictors, each trained with a particular data source (network, OS, and hardware) and tuned for features and policies of a specific class. While the specialized ensemble with a holistic view across the system improves detection, aggregating the independent conflicting inferences from the different predictors is challenging. ${\sf SUNDEW}$ resolves such conflicts with a hierarchical aggregation considering the threat-level, noise in the data sources, and prior domain knowledge. We evaluate ${\sf SUNDEW}$ on a real-world dataset of over 10,000 malware samples from 8 classes. It achieves an F1-Score of one for most classes, with an average of 0.93, and has a limited performance overhead of 1.5%. Our experiments on a common multi-featured dataset show that ${\sf SUNDEW}$ is 10% more accurate, with 89% lower false positives, than prior state-of-the-art predictors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助这个采纳,获得10
1秒前
stitch发布了新的文献求助10
1秒前
111完成签到 ,获得积分10
1秒前
lucky完成签到,获得积分10
1秒前
1秒前
370086320完成签到,获得积分10
2秒前
3秒前
kun完成签到,获得积分10
3秒前
3秒前
忧伤的桐应助小标采纳,获得10
3秒前
雨中小王应助远航采纳,获得10
4秒前
Angelina发布了新的文献求助100
4秒前
情怀应助小粒橙采纳,获得10
4秒前
在水一方应助莉莉子采纳,获得10
4秒前
5秒前
英姑应助平常澜采纳,获得10
5秒前
5秒前
6秒前
故梦完成签到,获得积分10
6秒前
7秒前
彭于晏应助傲娇的沁采纳,获得10
7秒前
YaRu应助GSR采纳,获得10
7秒前
田様应助眼睛大天抒采纳,获得10
7秒前
7秒前
albeit发布了新的文献求助10
8秒前
喜庆发布了新的文献求助10
8秒前
Zx_1993应助终南成风采纳,获得10
9秒前
9秒前
10秒前
故梦发布了新的文献求助10
11秒前
远航完成签到,获得积分10
11秒前
斯文败类应助孙朱珠采纳,获得10
11秒前
夜神月发布了新的文献求助10
12秒前
12秒前
12秒前
SciGPT应助tzy采纳,获得10
12秒前
赘婿应助隐龙居士采纳,获得10
13秒前
Liu应助niaoniao采纳,获得10
14秒前
桐桐应助痴情的夜云采纳,获得10
14秒前
14秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588167
求助须知:如何正确求助?哪些是违规求助? 4671269
关于积分的说明 14786547
捐赠科研通 4624667
什么是DOI,文献DOI怎么找? 2531667
邀请新用户注册赠送积分活动 1500268
关于科研通互助平台的介绍 1468240