Recidivism prediction: A machine learning approach for a more efficient justice system

累犯 计算机科学 经济正义 人工智能 机器学习 犯罪学 心理学 政治学 法学
作者
Shuitao Guo
出处
期刊:Intelligent Decision Technologies [IOS Press]
卷期号:19 (5): 3304-3322
标识
DOI:10.1177/18724981251350768
摘要

Predicting recidivism is crucial for public safety and improving the justice system. This study introduces ImAUC-PSVM, an improved support vector machine that better handles skewed data and hyperparameter sensitivity by directly optimizing the AUC, enhancing prediction accuracy. That change helps simplify things, and also means you don’t have to get lost in tweaking a ton of hyperparameters to make it work. This makes it especially useful when your dataset has those annoying, uneven class distributions. The theoretical side of it shows that the ImAUC-PSVM manages to keep all the important traits of the original PSVM but is much better at handling fast, incremental updates—something that's pretty essential when you want to keep recidivism predictions accurate over time. On top of that, they enhanced the artificial bee colony algorithm—which, I admit, sounds a bit quirky, but it's a smart bio-inspired optimization technique. Their version uses cooperative learning, where two “agents” share info to adjust positions of potential “food sources” based on which one performs better, guided by a shared learning factor. It's like bees working together more efficiently, you know? They tested the model using data from correctional facilities in China, and it scored a solid 90.26% in predictive accuracy. That's not just a good number; it underlines how well the model deals with those skewed datasets, which is often a big stumbling block in recidivism prediction. Overall, this research suggests that the ImAUC-PSVM could seriously boost how we model predictions in criminal justice, and it might be adaptable to the kinds of tricky, imbalanced problems you find in other fields, too. Seems like a neat step forward, even if some of the details are a bit dense. Code is publicly available at https://github.com/ShouXin-Guo/Recidivism/tree/main .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏天发布了新的文献求助10
1秒前
hikari发布了新的文献求助10
1秒前
酷波er应助wenbin采纳,获得10
1秒前
丘比特应助你在烦恼什么采纳,获得10
3秒前
扶丽君完成签到,获得积分10
3秒前
effort发布了新的文献求助10
4秒前
领导范儿应助青年才俊采纳,获得10
4秒前
5秒前
caca完成签到 ,获得积分10
5秒前
6秒前
6秒前
polarisier发布了新的文献求助10
7秒前
小申完成签到,获得积分10
8秒前
sunrain完成签到,获得积分10
9秒前
可耐的从安完成签到 ,获得积分10
9秒前
CipherSage应助夏天采纳,获得10
9秒前
10秒前
10秒前
Rabbit发布了新的文献求助10
11秒前
丘比特应助张莹莹采纳,获得30
11秒前
正己化人应助知画春秋采纳,获得10
11秒前
Jenkin发布了新的文献求助10
12秒前
12秒前
12秒前
水吉2000发布了新的文献求助10
13秒前
科研通AI6应助英吉利25采纳,获得10
13秒前
14秒前
mh完成签到,获得积分10
15秒前
小申发布了新的文献求助10
15秒前
sam完成签到,获得积分10
15秒前
wenbin发布了新的文献求助10
15秒前
刘刘刘完成签到 ,获得积分10
15秒前
迟迟发布了新的文献求助10
16秒前
共享精神应助zyl采纳,获得10
17秒前
嘻嘻哈哈应助善良的映容采纳,获得10
17秒前
Chaha应助Rabbit采纳,获得10
18秒前
小二郎应助ofha采纳,获得10
18秒前
18秒前
猫小猪发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259600
求助须知:如何正确求助?哪些是违规求助? 4421190
关于积分的说明 13762060
捐赠科研通 4295031
什么是DOI,文献DOI怎么找? 2356695
邀请新用户注册赠送积分活动 1353099
关于科研通互助平台的介绍 1314206