The prediction of sleep quality using wearable-assisted smart health monitoring systems based on statistical data

可穿戴计算机 智能手表 可穿戴技术 睡眠(系统调用) 计算机科学 人工智能 深度学习 危害 机器学习 医学 人机交互 心理学 嵌入式系统 社会心理学 操作系统
作者
Abu Sarwar Zamani,Aisha Hassan Abdalla Hashim,Md. Mobin Akhtar,Faizan Samdani,Ahmad Talha Siddiqui,Adel Alluhayb,Manar Ahmed Hamza,Naved Ahmad
出处
期刊:Journal of King Saud University - Science [Elsevier BV]
卷期号:35 (9): 102927-102927 被引量:2
标识
DOI:10.1016/j.jksus.2023.102927
摘要

The technology, which plays a significant role in our lives, has made it possible for many of the appliances and gadgets we use on a daily basis to be monitored and controlled remotely. Health and fitness data is collected by wearable devices attached to patients' bodies. A number of parties could benefit from this technology, including doctors, insurers, and health providers. This technology, including smartwatches, smart ring, smart cloth wristbands, and GPS shoes, is frequently used for fitness and wellness since it allows users to track their day-to-day health. Devices that compute the sleep characteristics by storing sleep movements fall within the category of wearables worn on the wrist. In order to lead a healthy lifestyle, sleep is crucial. Inadequate sleep can harm one's physical, mental, and emotional well-being and increase the risk of developing a number of ailments, including stress, heart disease, high blood pressure, insulin resistance, and other conditions. Deep learning (DL) models have recently been used to forecast sleep-quality based on wearables information from the awake hours. Deep learning has been demonstrated to be capable of predicting sleep efficiency based on wearable data obtained during awake periods. In this regard, this study creates a novel deep learning model for wearables-enabled smart health monitoring system (DLM-WESHMS) for the prediction of sleep quality. The wearables are initially able to collect data linked to sleep-activity using the described DLM-WESHMS approach. The data is then put through pre-processing to create a standard format. Using the DLM-WESHMS, sleep quality is predicted using the deep belief network (DBN) model. The DBN model uses the auto-encoders algorithm (AEA) to predict popularity, which improves the accuracy of its predictions of sleep quality. The experimental outcomes of the DLM-WESHMS approach are investigated using several metrics. The DLM-WESHMS model performs significantly better than other models, according to a thorough comparison analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzaaaxz应助阿风采纳,获得10
刚刚
1秒前
orixero应助Shaw采纳,获得10
1秒前
科研通AI2S应助门前大桥下采纳,获得10
1秒前
1秒前
smy发布了新的文献求助10
2秒前
我不会拉杆完成签到,获得积分10
3秒前
刘华银发布了新的文献求助10
3秒前
嘿帕王教官应助LuxuryLuo采纳,获得10
4秒前
5秒前
5秒前
冷酷的夜雪完成签到,获得积分20
6秒前
领导范儿应助Shaw采纳,获得10
6秒前
flag完成签到,获得积分10
6秒前
6秒前
优美飞柏完成签到,获得积分10
7秒前
斯文败类应助wyj采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
小巧灯泡完成签到,获得积分10
8秒前
linelolo完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
gao完成签到 ,获得积分10
11秒前
12秒前
烟花应助风中尔云采纳,获得10
12秒前
姜生完成签到,获得积分10
13秒前
13秒前
ding应助ikun采纳,获得10
14秒前
Laospakalfski发布了新的文献求助10
14秒前
15秒前
林二车娜姆完成签到,获得积分10
15秒前
探险家发布了新的文献求助10
16秒前
yewungs完成签到,获得积分10
16秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3876597
求助须知:如何正确求助?哪些是违规求助? 3419208
关于积分的说明 10712489
捐赠科研通 3143887
什么是DOI,文献DOI怎么找? 1734627
邀请新用户注册赠送积分活动 836908
科研通“疑难数据库(出版商)”最低求助积分说明 782884