Sustaining struvite production from wastewater through machine learning based modelling and process validation

鸟粪石 废水 线性回归 计算机科学 回归 环境科学 机器学习 数学 工艺工程 环境工程 统计 工程类
作者
Nageshwari Krishnamoorthy,Vimaladhasan Senthamizhan,P. Balasubramanian
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier BV]
卷期号:53: 102608-102608 被引量:11
标识
DOI:10.1016/j.seta.2022.102608
摘要

The looming scarcity of phosphorus rock and intensification of its extraction for fertilizing applications has triggered the researchers to work upon a potential alternative such as struvite precipitation from wastewaters. Struvite production at commercial scale requires the support of novel prediction tools to smoothen the planning and execution processes. The present work aims at predicting the struvite recovery using several machine learning algorithms such as linear regression model, polynomial regression model, random forest regression model and eXtreme Gradient Boosting (XGB) regression model. Datasets for ten significant process parameters such as pH, temperature, concentrations of phosphate, ammonium and magnesium, stirring speed, reaction and retention time, drying temperature and time of various wastewater sources were collected for predicting the recovery. To minimize the loss function, extensive grid search hyperparameter tuning was performed to optimize the model. XGB was found to be the most robust method for prediction of nutrient recovery as struvite. The highest regression coefficient (R2) of 0.9683 and 0.9483 were achieved for phosphate and ammonium recoveries, respectively. The key influencing factors on target output were studied using SHapley Additive exPlanations (SHAP) plots that depicts the interactive effect of each of the input parameters on phosphate and ammonium recovery. Experimental validation was carried out to further support the model predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小丸子发布了新的文献求助30
刚刚
内向的青荷完成签到,获得积分10
1秒前
SUN完成签到 ,获得积分10
1秒前
Eman完成签到,获得积分10
1秒前
Summer夏天发布了新的文献求助10
1秒前
星辰大海应助guojingjing采纳,获得10
1秒前
包子凯越完成签到,获得积分10
1秒前
2秒前
小杨完成签到,获得积分10
2秒前
2秒前
爱听歌的峻熙完成签到,获得积分10
2秒前
Zever完成签到,获得积分10
3秒前
冷静太君完成签到,获得积分10
3秒前
在水一方应助Xie采纳,获得10
3秒前
裴泡泡发布了新的文献求助10
3秒前
希望天下0贩的0应助957采纳,获得10
4秒前
苹果王子6699完成签到 ,获得积分10
4秒前
wangyup完成签到,获得积分10
5秒前
文静雨筠发布了新的文献求助10
5秒前
5秒前
薛晓博完成签到,获得积分10
6秒前
XiHuanChi完成签到,获得积分10
6秒前
yaoyao发布了新的文献求助10
6秒前
zszzzsss完成签到,获得积分10
6秒前
蔡蔡不菜菜完成签到,获得积分10
7秒前
科研通AI5应助昔颜采纳,获得10
7秒前
7秒前
kaia完成签到,获得积分10
7秒前
乐乐应助Xuuu采纳,获得30
7秒前
petrichor完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
prozac发布了新的文献求助10
8秒前
Surpass完成签到,获得积分10
8秒前
9秒前
科研通AI5应助小禾一定行采纳,获得10
9秒前
打打应助kk采纳,获得10
9秒前
10秒前
细雨清心完成签到,获得积分10
10秒前
俊逸的白易完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080699
求助须知:如何正确求助?哪些是违规求助? 4298576
关于积分的说明 13392242
捐赠科研通 4122276
什么是DOI,文献DOI怎么找? 2257639
邀请新用户注册赠送积分活动 1261948
关于科研通互助平台的介绍 1196024