Enhancing Proton Delocalization in Non-Sulfonated Membranes through Coupled Electron-Withdrawing Groups for High-Temperature Fuel Cells

作者
Yucong Liao,Rui Wang,Shengqiu Zhao,Junjie Zhang,Shuohao Wu,Bingxuan Liu,Rui Chen,Tian Tian,Huanyu Jin,Haolin Tang
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.5c15236
摘要

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have significant practical potential due to their high tolerance to CO impurities and efficient heat and water management. However, the performance of HT-PEMFCs is limited by low proton conductivity at low humidity and the inadequate high-temperature stability of polymer electrolytes. In this study, we prepared a nonsulfonated perfluorosulfonimide-phenylphosphonic acid (PFSI-BPA) membrane that exhibits high performance in HT-PEMFCs. Our strategy is to enhance the acidity of protogenic groups (sulfonimide and phosphonic acid groups) in the membrane by incorporating electron-withdrawing groups (sulfone and phenyl groups). These electron-withdrawing groups promote proton delocalization by lowering the energy barrier, thereby improving the nonsulfonated membrane's proton conductivity and thermal stability, confirmed by combining in situ measurements and theoretical calculations. The proton conductivity of the PFSI-BPA membrane is 3.2 times higher than that of a control sample with electron-donating groups at 40% relative humidity (RH). Moreover, the power density of the PFSI-BPA-based fuel cell reaches a peak of 2.44 W cm-2 under the conditions of 105 °C/40% RH, outperforming most previously reported values. This work provides valuable insights into the development of advanced polymer electrolytes for practical HT-PEMFCs. This study explores the enhancement of proton conductivity by increasing the acidity of protogenic groups through the inductive effect of electron-withdrawing groups, which lowers the energy barrier for proton delocalization. The synthesized perfluorosulfonyl imide-phenylphosphonic acid (PFSI-BPA) demonstrates outstanding water transport and proton conductivity even at low humidity, making it a promising candidate for next-generation high-temperature fuel cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐天睿完成签到,获得积分20
刚刚
badada完成签到 ,获得积分10
刚刚
1秒前
希望天下0贩的0应助yaoqing采纳,获得10
2秒前
步念发布了新的文献求助30
3秒前
3秒前
4秒前
4秒前
5秒前
香蕉觅云应助混子采纳,获得10
6秒前
7秒前
8秒前
向野发布了新的文献求助10
9秒前
9秒前
10秒前
Albert发布了新的文献求助10
10秒前
zxh发布了新的文献求助10
11秒前
hxy发布了新的文献求助10
12秒前
幽歌者无我给幽歌者无我的求助进行了留言
12秒前
13秒前
14秒前
14秒前
wang发布了新的文献求助10
15秒前
杨阳洋发布了新的文献求助10
15秒前
15秒前
TTXS完成签到,获得积分20
16秒前
研友_VZG7GZ应助zxh采纳,获得10
16秒前
maybe发布了新的文献求助10
17秒前
17秒前
disappear发布了新的文献求助10
18秒前
小余同学发布了新的文献求助30
19秒前
K神发布了新的文献求助10
19秒前
小咸鱼发布了新的文献求助10
20秒前
dew应助学不懂采纳,获得10
20秒前
HRXYZ完成签到,获得积分10
21秒前
zjl发布了新的文献求助30
21秒前
21秒前
科研通AI6应助优娜采纳,获得10
22秒前
22秒前
happysalt完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287393
求助须知:如何正确求助?哪些是违规求助? 4439752
关于积分的说明 13822752
捐赠科研通 4321833
什么是DOI,文献DOI怎么找? 2372149
邀请新用户注册赠送积分活动 1367753
关于科研通互助平台的介绍 1331183