ExSwin-Unet: An Unbalanced Weighted Unet with Shifted Window and External Attentions for Fetal Brain MRI Image Segmentation

计算机科学 分割 编码器 人工智能 模式识别(心理学) 变压器 图像分割 机器学习 电压 量子力学 操作系统 物理
作者
Yufei Wen,Chongxin Liang,Jingyin Lin,Huisi Wu,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 340-354 被引量:1
标识
DOI:10.1007/978-3-031-25066-8_18
摘要

AbstractAccurate fetal brain MRI image segmentation is essential for fetal disease diagnosis and treatment. While manual segmentation is laborious, time-consuming, and error-prone, automated segmentation is a challenging task owing to (1) the variations in shape and size of brain structures among patients, (2) the subtle changes caused by congenital diseases, and (3) the complicated anatomy of brain. It is critical to effectively capture the long-range dependencies and correlations among training samples to yield satisfactory results. Recently, some transformer-based models have been proposed and achieved good performance in segmentation tasks. However, the self-attention blocks embedded in transformers often neglect the latent relationships among different samples. Model may have biased results due to the unbalanced data distribution in the training dataset. We propose a novel unbalanced weighted Unet equipped with a new ExSwin transformer block to comprehensively address the above concerns by effectively capturing long-range dependencies and correlations among different samples. We design a deeper encoder to facilitate features extracting and preserving more semantic details. In addition, an adaptive weight adjusting method is implemented to dynamically adjust the loss weight of different classes to optimize learning direction and extract more features from under-learning classes. Extensive experiments on a FeTA dataset demonstrate the effectiveness of our model, achieving better results than state-of-the-art approaches.KeywordsFetal brain MRI imagesTransformerMedical image segmentation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liangzhang02完成签到,获得积分10
刚刚
1秒前
慕迎蕾发布了新的文献求助10
3秒前
3秒前
3秒前
桐桐应助认真学习采纳,获得10
4秒前
5秒前
mingjie完成签到,获得积分10
5秒前
小巴德发布了新的文献求助10
6秒前
6秒前
zuanyhou发布了新的文献求助10
6秒前
小杭76发布了新的文献求助10
8秒前
马骥发布了新的文献求助10
8秒前
科研通AI5应助1111采纳,获得20
9秒前
wop111应助虞无声采纳,获得10
10秒前
xly完成签到,获得积分10
10秒前
风起人散发布了新的文献求助10
11秒前
彭于晏应助fzy采纳,获得10
11秒前
11秒前
闪闪新梅完成签到,获得积分10
11秒前
11秒前
读行千万发布了新的文献求助10
13秒前
15秒前
lulu发布了新的文献求助30
15秒前
ovoclive发布了新的文献求助10
15秒前
Ykn发布了新的文献求助10
16秒前
关心发布了新的文献求助10
17秒前
Aten发布了新的文献求助10
18秒前
19秒前
弱水应助菲硕采纳,获得10
20秒前
ding应助依依采纳,获得10
21秒前
wyz发布了新的文献求助30
22秒前
22秒前
默默千亦完成签到 ,获得积分10
22秒前
whisper完成签到 ,获得积分10
24秒前
24秒前
Ava应助张花生采纳,获得10
25秒前
LL关闭了LL文献求助
25秒前
科研通AI6应助关心采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4818689
求助须知:如何正确求助?哪些是违规求助? 4128066
关于积分的说明 12775382
捐赠科研通 3867477
什么是DOI,文献DOI怎么找? 2128193
邀请新用户注册赠送积分活动 1149060
关于科研通互助平台的介绍 1044618