CGGLNet: Semantic Segmentation Network for Remote Sensing Images Based on Category-Guided Global–Local Feature Interaction

计算机科学 特征(语言学) 分割 图像分割 人工智能 模式识别(心理学) 特征提取 遥感 计算机视觉 地质学 语言学 哲学
作者
Yue Ni,Jiahang Liu,Weijian Chi,Xiaozhen Wang,Deren Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:19
标识
DOI:10.1109/tgrs.2024.3379398
摘要

As spatial resolution increases, the information conveyed by remote sensing images becomes more and more complex. Large-scale variation and highly discrete distribution of objects greatly increase the challenge of the semantic segmentation task for remote sensing images. Mainstream approaches usually use implicit attention mechanisms or Transformer modules to achieve global context for good results. However, these approaches fail to explicitly extract intra-object consistency and inter-object saliency features leading to unclear boundaries and incomplete structures. In this paper, we propose a Category-Guided Global-Local Feature Interaction Network (CGGLNet), which utilizes category information to guide the modeling of global contextual information. To better acquire global information, we proposed a Category-Guided Supervised Transformer module (CGSTM). This module guides the modeling of global contextual information by estimating the potential class information of pixels so that features of the same class are more aggregated and those of different classes are more easily distinguished. To enhance the representation of local detailed features of multi-scale objects, we designed the Adaptive Local Feature Extraction Module (ALFEM). By parallel connection of the CGSTM and the ALFEM, our network can extract rich global and local context information contained in the image. Meanwhile, the designed Feature Refinement Segmentation Head (FRSH) helps to reduce the semantic difference between deep and shallow features and realizes the full integration of different levels of information. Extensive ablation and comparison experiments on two public remote sensing datasets (ISPRS Vaihingen dataset and ISPRS Potsdam dataset) indicate that our proposed CGGLNet achieves superior performance compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
少川完成签到 ,获得积分10
2秒前
3秒前
lyy完成签到,获得积分10
3秒前
Strongly完成签到,获得积分10
4秒前
颖二十完成签到 ,获得积分10
6秒前
asdas完成签到,获得积分10
7秒前
CodeCraft应助青年才俊采纳,获得30
9秒前
9秒前
charon发布了新的文献求助10
9秒前
my发布了新的文献求助10
10秒前
从容的巧曼完成签到 ,获得积分10
11秒前
godslibrary给wyt的求助进行了留言
11秒前
asdas发布了新的文献求助10
11秒前
11秒前
11秒前
greenf发布了新的文献求助200
11秒前
酷炫元风完成签到,获得积分10
12秒前
yy123完成签到,获得积分10
12秒前
Jasper应助LJ采纳,获得10
13秒前
深情安青应助阔达凝天采纳,获得10
13秒前
xiaoq发布了新的文献求助10
13秒前
缓慢的凝云完成签到 ,获得积分10
14秒前
凶狠的乐巧完成签到,获得积分10
14秒前
15秒前
16秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
17秒前
xxxxx发布了新的文献求助10
17秒前
打打应助二哈啃海棠采纳,获得10
18秒前
Owen应助oo采纳,获得10
18秒前
斯文败类应助万幸鹿采纳,获得10
19秒前
清新的苑博完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
Linson发布了新的文献求助10
20秒前
吴成发布了新的文献求助10
20秒前
20秒前
marryhh发布了新的文献求助30
21秒前
Pumpinko发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5265116
求助须知:如何正确求助?哪些是违规求助? 4425209
关于积分的说明 13775716
捐赠科研通 4300491
什么是DOI,文献DOI怎么找? 2359831
邀请新用户注册赠送积分活动 1355852
关于科研通互助平台的介绍 1317181