Immune-related adverse events of neoadjuvant immunotherapy in patients with perioperative cancer: a machine-learning-driven, decade-long informatics investigation

医学 不利影响 信息学 免疫疗法 内科学 肿瘤科 癌症 政治学 法学
作者
Song‐Bin Guo,Dengyao Liu,Rong Hu,Zhen-Zhong Zhou,Meng Yuan,Hailong Li,Weijuan Huang,Xiao‐Peng Tian
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:13 (8): e011040-e011040
标识
DOI:10.1136/jitc-2024-011040
摘要

Research on neoadjuvant immunotherapy (NAI) is increasingly focusing on immunotherapy-related adverse events (AEs). However, many unknowns remain in this field. Hence, through the machine learning (ML)-driven informatics analysis, this study aimed to profile the global decade-long scientific landscape of AEs of NAI and further reveal its critical issues and directions that deserve deeper exploration. During the past decade, the amount of research in the field of NAI safety has displayed a positive trend (annual growth rate: 30.2%), and it has achieved good global collaboration (international coauthorship: 17.43%). Using an unsupervised clustering algorithm, we identified six dominant research clusters, among which Cluster 1 (standardizing response assessment criteria for NAI to minimize its adverse reactions; average citation=34.86±95.48) had the highest impact and Cluster 6 (efficacy and safety of multiple therapy patterns combination) was an emerging research cluster (temporal central tendency=2022.43, research effort dispersion=0.52), with “irAEs” (s=0.4242 (95% CI: 0.01142 to 0.8371), R 2 =0.4125, p=0.0453), “ICIs” (immune checkpoint inhibitors) (s=1.127 (95% CI: 0.5403 to 1.714), R 2 =0.7103, p=0.0022), and “efficacy and safety” (s=0.5455 (95% CI: 0.1145 to 0.9764), R 2 =0.5157, p=0.0193) showing significant overall growth. More importantly, further hotspot burst analysis indicated “ICI” and “efficacy and safety” as the emerging research focuses, demonstrating that scholars in the field are increasingly aware of the importance of balancing NAI efficacy and safety. In conclusion, this study presents ML-derived evidence that outlines the safety challenges of NAI and highlights the importance of balancing its efficacy and safety for its application in patients with perioperative cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助skr采纳,获得10
1秒前
小马甲应助Costing采纳,获得10
1秒前
执着的海发布了新的文献求助10
1秒前
xzf1996完成签到,获得积分10
1秒前
buno应助魔王小豆包采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
顾矜应助加减乘除采纳,获得10
2秒前
3秒前
freebird完成签到,获得积分0
3秒前
JMY发布了新的文献求助10
4秒前
4秒前
Thhhhm发布了新的文献求助10
4秒前
cyr完成签到,获得积分10
5秒前
半个饼发布了新的文献求助10
5秒前
充电宝应助liwei采纳,获得10
6秒前
妮妮完成签到 ,获得积分10
6秒前
NexusExplorer应助舒适的翠梅采纳,获得10
6秒前
Guoyut发布了新的文献求助10
7秒前
英吉利25发布了新的文献求助10
7秒前
思源应助Amosummer采纳,获得30
7秒前
mdx发布了新的文献求助10
7秒前
8秒前
8秒前
leo完成签到,获得积分10
8秒前
8秒前
朴实以丹发布了新的文献求助10
9秒前
liu完成签到,获得积分10
9秒前
残剑月应助动听衬衫采纳,获得10
9秒前
9秒前
Ava应助wwl采纳,获得10
10秒前
sevenhill应助YU采纳,获得10
10秒前
椰汁发布了新的文献求助10
12秒前
鳗鱼匕发布了新的文献求助10
12秒前
小学生1005发布了新的文献求助10
12秒前
咸鱼咸完成签到,获得积分10
13秒前
luoluo完成签到,获得积分20
13秒前
Aether发布了新的文献求助10
13秒前
贾小云完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601362
求助须知:如何正确求助?哪些是违规求助? 4686881
关于积分的说明 14846604
捐赠科研通 4680822
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506197
关于科研通互助平台的介绍 1471293