Fully Unsupervised Deepfake Video Detection Via Enhanced Contrastive Learning

计算机科学 判别式 人工智能 探测器 分类器(UML) 水准点(测量) 标记数据 模式识别(心理学) 机器学习 大地测量学 电信 地理
作者
Tong Qiao,Shichuang Xie,Yanli Chen,Florent Retraint,Xiangyang Luo
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (7): 4654-4668 被引量:7
标识
DOI:10.1109/tpami.2024.3356814
摘要

Nowadays, Deepfake videos are widely spread over the Internet, which severely impairs the public trustworthiness and social security. Although more and more reliable detectors have recently sprung up for resisting against that new-emerging tampering technique, some challengeable issues still need to be addressed, such that most of Deepfake video detectors under the framework of the supervised mechanism require a large scale of samples with accurate labels for training. When the amount of the training samples with the true labels are not enough or the training data are maliciously poisoned by adversaries, the supervised classifier is probably not reliable for detection. To tackle that tough issue, it is proposed to design a fully unsupervised Deepfake detector. In particular, in the whole procedure of training or testing, we have no idea of any information about the true labels of samples. First, we novelly design a pseudo-label generator for labeling the training samples, where the traditional hand-crafted features are used to characterize both types of samples. Second, the training samples with the pseudo-labels are fed into the proposed enhanced contrastive learner, in which the discriminative features are further extracted and continually refined by iteration on the guidance of the contrastive loss. Last, relying on the inter-frame correlation, we complete the final binary classification between real and fake videos. A large scale of experimental results empirically verify the effectiveness of our proposed unsupervised Deepfake detector on the benchmark datasets including FF++, Celeb-DF, DFD, DFDC, and UADFV. Furthermore, our proposed well-performed detector is superior to the current unsupervised method, and comparable to the baseline supervised methods. More importantly, when facing the problem of the labeled data poisoned by malicious adversaries or insufficient data for training, our proposed unsupervised Deepfake detector performs its powerful superiority. Our source codes have been released at https://github.com/bestalllen/Unsupervised_DF_Detection/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Faith发布了新的文献求助10
1秒前
小扑棱蛾子完成签到 ,获得积分10
1秒前
顾矜应助歪比巴卜采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
顾矜应助EED采纳,获得10
3秒前
40873发布了新的文献求助10
3秒前
yiyi发布了新的文献求助10
4秒前
孙困发布了新的文献求助10
5秒前
科目三应助小南采纳,获得10
5秒前
6秒前
细心青烟发布了新的文献求助10
6秒前
一只乱叫的香菜完成签到,获得积分20
6秒前
科研通AI6应助是希希啊a采纳,获得10
7秒前
7秒前
lisn发布了新的文献求助30
7秒前
科研通AI6应助摸鱼的张采纳,获得10
7秒前
冷艳弘文发布了新的文献求助30
7秒前
辛勤的八宝粥完成签到,获得积分20
8秒前
8秒前
MAY完成签到,获得积分10
8秒前
8秒前
8秒前
科研通AI6应助cc66采纳,获得10
8秒前
执着谷兰应助老木虫采纳,获得10
8秒前
秋半梦完成签到,获得积分10
9秒前
zho应助小鱼儿采纳,获得10
9秒前
希望天下0贩的0应助Ma采纳,获得20
9秒前
2514完成签到,获得积分20
9秒前
华仔应助高冷的呆呆鱼采纳,获得10
9秒前
10秒前
善学以致用应助Sledge采纳,获得10
10秒前
田様应助wenwenya采纳,获得10
10秒前
妖哥发布了新的文献求助10
10秒前
10秒前
jhx完成签到,获得积分10
11秒前
xicifish完成签到,获得积分10
11秒前
欢呼的汉堡完成签到 ,获得积分20
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4689571
求助须知:如何正确求助?哪些是违规求助? 4061795
关于积分的说明 12558997
捐赠科研通 3759434
什么是DOI,文献DOI怎么找? 2076232
邀请新用户注册赠送积分活动 1104935
科研通“疑难数据库(出版商)”最低求助积分说明 983802