Fully Unsupervised Deepfake Video Detection Via Enhanced Contrastive Learning

计算机科学 判别式 人工智能 探测器 分类器(UML) 水准点(测量) 标记数据 模式识别(心理学) 机器学习 大地测量学 电信 地理
作者
Tong Qiao,Shichuang Xie,Yanli Chen,Florent Retraint,Xiangyang Luo
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (7): 4654-4668 被引量:24
标识
DOI:10.1109/tpami.2024.3356814
摘要

Nowadays, Deepfake videos are widely spread over the Internet, which severely impairs the public trustworthiness and social security. Although more and more reliable detectors have recently sprung up for resisting against that new-emerging tampering technique, some challengeable issues still need to be addressed, such that most of Deepfake video detectors under the framework of the supervised mechanism require a large scale of samples with accurate labels for training. When the amount of the training samples with the true labels are not enough or the training data are maliciously poisoned by adversaries, the supervised classifier is probably not reliable for detection. To tackle that tough issue, it is proposed to design a fully unsupervised Deepfake detector. In particular, in the whole procedure of training or testing, we have no idea of any information about the true labels of samples. First, we novelly design a pseudo-label generator for labeling the training samples, where the traditional hand-crafted features are used to characterize both types of samples. Second, the training samples with the pseudo-labels are fed into the proposed enhanced contrastive learner, in which the discriminative features are further extracted and continually refined by iteration on the guidance of the contrastive loss. Last, relying on the inter-frame correlation, we complete the final binary classification between real and fake videos. A large scale of experimental results empirically verify the effectiveness of our proposed unsupervised Deepfake detector on the benchmark datasets including FF++, Celeb-DF, DFD, DFDC, and UADFV. Furthermore, our proposed well-performed detector is superior to the current unsupervised method, and comparable to the baseline supervised methods. More importantly, when facing the problem of the labeled data poisoned by malicious adversaries or insufficient data for training, our proposed unsupervised Deepfake detector performs its powerful superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草东树发布了新的文献求助10
刚刚
科研通AI6.1应助无情颖采纳,获得10
刚刚
1秒前
1秒前
ao完成签到,获得积分10
3秒前
GROVE完成签到,获得积分10
3秒前
小二郎应助野性的黑裤采纳,获得10
4秒前
zhangsan完成签到,获得积分20
6秒前
打打应助开放的立轩采纳,获得10
7秒前
LaTeXer应助大二郎采纳,获得50
8秒前
善学以致用应助热心翠霜采纳,获得10
8秒前
9秒前
三鲜面完成签到,获得积分10
10秒前
开心果完成签到,获得积分10
10秒前
顾矜应助不朽采纳,获得10
10秒前
11秒前
戊烷完成签到,获得积分10
11秒前
桐桐应助酷小柯采纳,获得10
12秒前
毕胜完成签到,获得积分10
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
隐形曼青应助沉默的烨磊采纳,获得10
18秒前
18秒前
19秒前
木偶完成签到,获得积分10
20秒前
星辰完成签到,获得积分10
20秒前
英吉利25发布了新的文献求助10
20秒前
科科研发布了新的文献求助30
21秒前
21秒前
英俊的铭应助忧郁难胜采纳,获得10
22秒前
srx发布了新的文献求助20
22秒前
张均旗发布了新的文献求助10
22秒前
22秒前
菠萝蜜完成签到,获得积分10
23秒前
23秒前
背后中心发布了新的文献求助10
23秒前
xc完成签到,获得积分10
23秒前
李健应助王怜花采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770469
求助须知:如何正确求助?哪些是违规求助? 5585240
关于积分的说明 15424252
捐赠科研通 4904062
什么是DOI,文献DOI怎么找? 2638468
邀请新用户注册赠送积分活动 1586331
关于科研通互助平台的介绍 1541406