Integrating physics-based modeling and machine learning for degradation diagnostics of lithium-ion batteries

降级(电信) 电池(电) 锂(药物) 失效物理学 机器学习 计算机科学 离子 可靠性工程 淡出 健康状况 材料科学 数码产品 人工智能 纳米技术 电气工程 工程类 物理 可靠性(半导体) 功率(物理) 医学 电信 量子力学 内分泌学 操作系统
作者
Adam Thelen,Yu Hui Lui,Sheng Shen,Simon Laflamme,Shan Hu,Hui Ye,Chao Hu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:50: 668-695 被引量:112
标识
DOI:10.1016/j.ensm.2022.05.047
摘要

Traditional lithium-ion (Li-ion) battery state of health (SOH) estimation methodologies that focused on estimating present cell capacity do not provide sufficient information to determine the cell's lifecycle stage or value in second-life use. Quantifying the underlying degradation modes that cause capacity fade can give further insight into the electrochemical state of the cell and provide more detailed health information such as the remaining active materials and lithium inventory. However, current physics-based methods for degradation diagnostics require long-term cycling data and are computationally expensive to deploy locally on a device. To improve upon current methods, we propose and extensively test two light-weight physics-informed machine learning methods for online estimating the capacity of a battery cell and diagnosing its primary degradation modes using only limited early-life experimental degradation data. To enable late-life prediction (e.g. > 1.5 years) without the use of late-life experimental data, each of the methods is trained using simulation data from a physics-based half-cell model and early-life (e.g. < 3 months) degradation data obtained from cycling tests. The proposed methods are comprehensively evaluated using data from a long-term (3.5 years) cycling experiment of 16 implantable-grade Li-ion cells cycled under two temperatures and C-rates. Results from a four-fold cross-validation study show that the proposed physics-informed machine learning models are capable of improving the estimation accuracy of cell capacity and the state of three primary degradation modes by over 50% compared to a purely data-driven approach. Additionally, this work provides insights into the role of temperature and C-rate in cell degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuyao0302完成签到,获得积分10
刚刚
1秒前
舒舒完成签到,获得积分10
1秒前
osel完成签到,获得积分10
1秒前
1秒前
裂冰应助michael采纳,获得30
1秒前
polarisier发布了新的文献求助10
2秒前
蠢萌的小哈完成签到 ,获得积分10
2秒前
zmy发布了新的文献求助10
3秒前
3秒前
林结衣完成签到,获得积分10
3秒前
Edward发布了新的文献求助10
3秒前
3秒前
curtain完成签到,获得积分10
3秒前
今后应助铱凡采纳,获得10
4秒前
5秒前
舒舒发布了新的文献求助10
5秒前
5秒前
Yuxiao完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
CFC12发布了新的文献求助10
5秒前
危机的小蝴蝶完成签到,获得积分10
7秒前
ZZZ完成签到,获得积分10
7秒前
8秒前
10秒前
沙翠风发布了新的文献求助10
10秒前
打打应助xwwdcg采纳,获得10
11秒前
11秒前
11秒前
Hao完成签到,获得积分10
12秒前
Jiangxiaotao发布了新的文献求助50
12秒前
13223456完成签到,获得积分10
12秒前
Shining完成签到,获得积分20
12秒前
大胆诗云发布了新的文献求助10
12秒前
weitaiyy完成签到,获得积分10
13秒前
duzhongyan完成签到,获得积分10
13秒前
宸5931发布了新的文献求助10
13秒前
援兮完成签到,获得积分10
14秒前
桂花味的月亮关注了科研通微信公众号
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490517
求助须知:如何正确求助?哪些是违规求助? 4589033
关于积分的说明 14423100
捐赠科研通 4521062
什么是DOI,文献DOI怎么找? 2477127
邀请新用户注册赠送积分活动 1462477
关于科研通互助平台的介绍 1435318