2D lamellar membrane with nanochannels synthesized by bottom-up assembly approach for the superior photocatalytic hydrogen evolution

光催化 材料科学 纳米片 层状结构 堆积 纳米技术 化学工程 水溶液 复合材料 化学 催化作用 有机化学 生物化学 工程类
作者
Weiming Zhou,Yiting Wu,Hongqiang Huang,Mingxin Zhang,Xuhui Sun,Zequn Wang,Fei Zhao,Houyu Zhang,Tengfeng Xie,Meng An,Liwei Wang,Zhanhui Yuan
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:168: 112767-112767 被引量:13
标识
DOI:10.1016/j.rser.2022.112767
摘要

Designing nanoscale photocatalysts to improve photocatalytic efficiency is a popular research topic. However, for wide application and friendly environment, achieving good dispersion and multiple recycling of photocatalysts at the nanoscale remains challenging. Herein, a general bottom-up assembly method is proposed for designing a class of two-dimensional lamellar membranes (2DLMs) for photocatalytic applications. A bismuth oxychloride (BiOCl) nanosheet (BN) was used as a demo photocatalyst to construct a 2DLM via self-stacking. The designed BiOCl membrane (BM) exhibited excellent physical properties including flexibility, mechanical strength (tensile strength = 15.75 MPa, fracture strain = 0.056%), and translucence, as well as superior photocatalytic performance with excellent recycling stability and reusability. The photocatalytic hydrogen evolution performance of BM was 2.5-fold that of BN particles dispersed in an aqueous solution. Further theoretical calculations revealed that a BM with appropriately sized nanochannels can accelerate water transport, and the main horizontal channel size of the BM (3.13 nm) is very close to the size of the ideal water transport nanochannel. Furthermore, the confined internal space reduces the number of hydrogen bonds for water molecules within the nanochannels, thereby enhancing the interfacial reaction rate and photocatalytic efficiency. This study presents a simple bottom-up assembly method to design photocatalysts with further improved performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SY完成签到,获得积分20
刚刚
Tomin完成签到,获得积分10
1秒前
2秒前
2秒前
zpbb完成签到,获得积分10
3秒前
鼠标划到头像完成签到,获得积分10
4秒前
哆啦A梦完成签到,获得积分10
4秒前
王青文发布了新的文献求助10
4秒前
高贵的思天完成签到,获得积分10
4秒前
maz123456完成签到,获得积分10
6秒前
梦月完成签到,获得积分10
6秒前
霍红旭发布了新的文献求助10
6秒前
zxp完成签到,获得积分10
6秒前
感性的俊驰完成签到 ,获得积分10
6秒前
zzx完成签到,获得积分10
6秒前
XiaoBai_xh关注了科研通微信公众号
7秒前
科研通AI2S应助fuguier采纳,获得10
7秒前
zhaolee完成签到 ,获得积分10
7秒前
8秒前
小二郎应助AHR采纳,获得10
10秒前
华仔应助AHR采纳,获得10
10秒前
小蘑菇应助AHR采纳,获得10
10秒前
灿烂完成签到,获得积分10
10秒前
余琳发布了新的文献求助10
11秒前
可爱的函函应助Jiang采纳,获得10
11秒前
11秒前
欲望被鬼完成签到,获得积分10
11秒前
WSYang完成签到,获得积分10
11秒前
YifanWang应助100采纳,获得10
12秒前
多多看文献完成签到,获得积分10
12秒前
rh1006完成签到,获得积分10
12秒前
12秒前
爆美完成签到 ,获得积分10
12秒前
12秒前
霍红旭完成签到,获得积分10
13秒前
Atlantis完成签到,获得积分10
13秒前
凯蒂完成签到,获得积分10
14秒前
铝合金男孩完成签到,获得积分10
14秒前
15秒前
重要雁梅完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795709
求助须知:如何正确求助?哪些是违规求助? 3340749
关于积分的说明 10301635
捐赠科研通 3057268
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642