Container: Context Aggregation Network

计算机科学 容器(类型理论) 背景(考古学) 业务 材料科学 地理 复合材料 考古
作者
Peng Gao,Jiasen Lu,Hongsheng Li,Roozbeh Mottaghi,Aniruddha Kembhavi
出处
期刊:Cornell University - arXiv 被引量:40
标识
DOI:10.48550/arxiv.2106.01401
摘要

Convolutional neural networks (CNNs) are ubiquitous in computer vision, with a myriad of effective and efficient variations. Recently, Transformers -- originally introduced in natural language processing -- have been increasingly adopted in computer vision. While early adopters continue to employ CNN backbones, the latest networks are end-to-end CNN-free Transformer solutions. A recent surprising finding shows that a simple MLP based solution without any traditional convolutional or Transformer components can produce effective visual representations. While CNNs, Transformers and MLP-Mixers may be considered as completely disparate architectures, we provide a unified view showing that they are in fact special cases of a more general method to aggregate spatial context in a neural network stack. We present the \model (CONText AggregatIon NEtwoRk), a general-purpose building block for multi-head context aggregation that can exploit long-range interactions \emph{a la} Transformers while still exploiting the inductive bias of the local convolution operation leading to faster convergence speeds, often seen in CNNs. In contrast to Transformer-based methods that do not scale well to downstream tasks that rely on larger input image resolutions, our efficient network, named \modellight, can be employed in object detection and instance segmentation networks such as DETR, RetinaNet and Mask-RCNN to obtain an impressive detection mAP of 38.9, 43.8, 45.1 and mask mAP of 41.3, providing large improvements of 6.6, 7.3, 6.9 and 6.6 pts respectively, compared to a ResNet-50 backbone with a comparable compute and parameter size. Our method also achieves promising results on self-supervised learning compared to DeiT on the DINO framework. Code is released at \url{https://github.com/allenai/container}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助从从余余采纳,获得10
刚刚
kkfly完成签到,获得积分10
刚刚
杨乐完成签到,获得积分10
刚刚
so完成签到,获得积分10
刚刚
完美世界应助斯文的不弱采纳,获得10
1秒前
张焱森完成签到,获得积分10
2秒前
李健的粉丝团团长应助123采纳,获得10
2秒前
2秒前
tony8310完成签到,获得积分10
2秒前
潇洒的翠丝完成签到,获得积分10
2秒前
2秒前
3秒前
周小鱼完成签到,获得积分10
3秒前
4秒前
4秒前
陌君子筱发布了新的文献求助10
5秒前
5秒前
banksy完成签到,获得积分10
5秒前
suliang完成签到,获得积分10
5秒前
HR112驳回了nieqie应助
5秒前
追寻的纸鹤完成签到 ,获得积分10
5秒前
默默完成签到,获得积分10
5秒前
无妄发布了新的文献求助10
5秒前
薏米人儿完成签到 ,获得积分10
6秒前
怡然的白开水完成签到,获得积分10
6秒前
岁月旧曾谙完成签到,获得积分10
6秒前
6秒前
JRALL完成签到 ,获得积分10
6秒前
stan完成签到,获得积分10
6秒前
元靖完成签到,获得积分10
7秒前
一行完成签到,获得积分10
7秒前
7秒前
蒸馏水完成签到,获得积分10
7秒前
奶瓶守护者完成签到 ,获得积分10
8秒前
风趣的苑博完成签到,获得积分10
8秒前
8秒前
上官若男应助fjaa采纳,获得10
8秒前
9秒前
忧心的寄松完成签到,获得积分10
9秒前
自觉孤云发布了新的文献求助40
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555322
求助须知:如何正确求助?哪些是违规求助? 4640022
关于积分的说明 14658345
捐赠科研通 4582077
什么是DOI,文献DOI怎么找? 2513053
邀请新用户注册赠送积分活动 1487748
关于科研通互助平台的介绍 1458776