亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A big data driven multilevel deep learning framework for predicting terrorist attacks

大数据 计算机科学 数据科学 恐怖主义 深度学习 人工智能 机器学习 数据挖掘 政治学 法学
作者
Ume Kalsooma,Sahar Arshad,Amerah Albarah,Imran Siddiqi,Saeed Ullah,Abdul Mateen,Farhan Amin
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1): 23060-23060
标识
DOI:10.1038/s41598-025-08201-0
摘要

In recent years, terrorism has increasingly threatened human security, causing violence, fear, and damage to both the general public and specific targets. These attacks create unrest among individuals and within society. Leveraging the recent advancements in deep machine learning, several intelligent systems have been developed to predict terrorist attacks. However, existing state-of-the-art models are limited, lack support for big data, suffer from accuracy issues, and require extensive modifications. Therefore, to fill this gap, herein, we propose an integrated Big Data deep learning-based predictive model to predict the probability of a terrorist attack. We treat the series of terrorist activities as a sequence modeling problem and propose a big data long short-term memory network. It is a layered model capable of processing large-scale data. Our proposed model can learn from past events and forecast future attacks. The proposed model predicts the likely location of future attacks at the city, country, and regional levels. The experimental study of the proposed model was carried out on the samples in the global terrorism dataset, and promising results are reported on a number of standard evaluation metrics, accuracy, precision, Recall, and F1 score. The obtained results suggest that the proposed model contributes substantially to predicting the probability of an attack at a particular location. The identification of potential locations of an attack allows law enforcement agencies to take suitable preventative measures to combat terrorism effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DduYy完成签到,获得积分10
21秒前
ceeray23应助科研通管家采纳,获得10
22秒前
ceeray23应助科研通管家采纳,获得10
22秒前
冉亦完成签到,获得积分10
26秒前
48秒前
犬来八荒发布了新的文献求助20
53秒前
HYQ完成签到 ,获得积分10
56秒前
TYM发布了新的文献求助10
1分钟前
科研通AI6应助TYM采纳,获得30
1分钟前
gengen应助犬来八荒采纳,获得10
1分钟前
1分钟前
1分钟前
犬来八荒完成签到,获得积分10
1分钟前
yyy发布了新的文献求助10
1分钟前
1分钟前
小二郎应助yyy采纳,获得10
1分钟前
Only完成签到 ,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
betterme完成签到,获得积分10
2分钟前
2分钟前
CRUSADER完成签到,获得积分10
3分钟前
小不点应助明芬采纳,获得10
3分钟前
西红柿有饭吃吗完成签到,获得积分10
4分钟前
明芬发布了新的文献求助10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
GU完成签到,获得积分10
4分钟前
5分钟前
炙热的雪糕完成签到,获得积分10
5分钟前
Zyy发布了新的文献求助20
5分钟前
我是老大应助科研通管家采纳,获得10
6分钟前
大个应助明芬采纳,获得10
6分钟前
6分钟前
南寅完成签到,获得积分10
6分钟前
852应助ceeray23采纳,获得20
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599818
求助须知:如何正确求助?哪些是违规求助? 4685540
关于积分的说明 14838598
捐赠科研通 4671430
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470945