Comparative Study of Raw Ultrasound Data Representations in Deep Learning to Classify Hepatic Steatosis

脂肪肝 脂肪变性 接收机工作特性 超声波 人工智能 磁共振成像 卷积神经网络 模式识别(心理学) 医学 切断 放射科 核医学 计算机科学 病理 内科学 物理 疾病 量子力学
作者
Sergio J. Sanabria,Amir M. Pirmoazen,Jeremy Dahl,Aya Kamaya,Ahmed El Kaffas
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:48 (10): 2060-2078 被引量:12
标识
DOI:10.1016/j.ultrasmedbio.2022.05.031
摘要

Adiposity accumulation in the liver is an early-stage indicator of non-alcoholic fatty liver disease. Analysis of ultrasound (US) backscatter echoes from liver parenchyma with deep learning (DL) may offer an affordable alternative for hepatic steatosis staging. The aim of this work was to compare DL classification scores for liver steatosis using different data representations constructed from raw US data. Steatosis in N = 31 patients with confirmed or suspected non-alcoholic fatty liver disease was stratified based on fat-fraction cutoff values using magnetic resonance imaging as a reference standard. US radiofrequency (RF) frames (raw data) and clinical B-mode images were acquired. Intermediate image formation stages were modeled from RF data. Power spectrum representations and phase representations were also calculated. Co-registered patches were used to independently train 1-, 2- and 3-D convolutional neural networks (CNNs), and classifications scores were compared with cross-validation. There were 67,800 patches available for 2-D/3-D classification and 1,830,600 patches for 1-D classification. The results were also compared with radiologist B-mode annotations and quantitative ultrasound (QUS) metrics. Patch classification scores (area under the receiver operating characteristic curve [AUROC]) revealed significant reductions along successive stages of the image formation process (p < 0.001). Patient AUROCs were 0.994 for RF data and 0.938 for clinical B-mode images. For all image formation stages, 2-D CNNs revealed higher patch and patient AUROCs than 1-D CNNs. CNNs trained with power spectrum representations converged faster than those trained with RF data. Phase information, which is usually discarded in the image formation process, provided a patient AUROC of 0.988. DL models trained with RF and power spectrum data (AUROC = 0.998) provided higher scores than conventional QUS metrics and multiparametric combinations thereof (AUROC = 0.986). Radiologist annotations indicated lower hepatic steatosis classification accuracies (Acc = 0.914) with respect to magnetic resonance imaging proton density fat fraction that DL models (Acc = 0.989). Access to raw ultrasound data combined with artificial intelligence techniques may offer superior opportunities for quantitative tissue diagnostics than conventional sonographic images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞翔的笨蛋完成签到,获得积分10
刚刚
QQQ发布了新的文献求助10
刚刚
1秒前
孤独手机发布了新的文献求助10
1秒前
懒羊羊完成签到 ,获得积分10
1秒前
FashionBoy应助熊熊采纳,获得10
3秒前
long发布了新的文献求助10
4秒前
6秒前
8秒前
8秒前
9秒前
10秒前
桐桐应助早饭吃蛋饼啦采纳,获得10
10秒前
sober发布了新的文献求助10
10秒前
11秒前
yn发布了新的文献求助10
13秒前
哈哈哈发布了新的文献求助10
13秒前
赘婿应助早饭吃蛋饼啦采纳,获得10
13秒前
14秒前
研友_VZG7GZ应助4712采纳,获得10
14秒前
14秒前
今后应助猪猪hero采纳,获得10
14秒前
15秒前
鲤鱼盼望应助zzz采纳,获得10
15秒前
ddddddd发布了新的文献求助30
16秒前
端庄毛巾发布了新的文献求助10
18秒前
Freesia发布了新的文献求助10
18秒前
kitten完成签到,获得积分10
19秒前
19秒前
李梦发布了新的文献求助30
21秒前
一叶知秋应助sober采纳,获得10
22秒前
浅斟低唱发布了新的文献求助10
22秒前
花开花落忆江南完成签到,获得积分10
23秒前
23秒前
24秒前
顾矜应助QQQ采纳,获得10
25秒前
南屿完成签到,获得积分10
25秒前
25秒前
26秒前
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4109918
求助须知:如何正确求助?哪些是违规求助? 3648254
关于积分的说明 11556192
捐赠科研通 3353931
什么是DOI,文献DOI怎么找? 1842539
邀请新用户注册赠送积分活动 908880
科研通“疑难数据库(出版商)”最低求助积分说明 825774