Performance of Two Deep Learning-based AI Models for Breast Cancer Detection and Localization on Screening Mammograms from BreastScreen Norway

医学 接收机工作特性 置信区间 乳腺癌 乳腺摄影术 人工智能 乳腺癌筛查 癌症 医学物理学 妇科 内科学 计算机科学
作者
Marit Almenning Martiniussen,Marthe Larsen,Tone Hovda,Merete U. Kristiansen,Fredrik A. Dahl,Line Eikvil,Olav Brautaset,Atle Bjørnerud,Vessela N. Kristensen,Marie Burns Bergan,Solveig Hofvind
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240039
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To evaluate cancer detection and marker placement accuracy of two artificial intelligence (AI) models developed for interpretation of screening mammograms. Materials and Methods This retrospective study included data from 129 434 screening examinations (all female, mean age 59.2, SD = 5.8) performed between January 2008 and December 2018 in BreastScreen Norway. Model A was commercially available and B was an in-house model. Area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CIs) were calculated. The study defined 3.2% and 11.1% of the examinations with the highest AI scores as positive, threshold 1 and 2, respectively. A radiologic review assessed location of AI markings and classified interval cancers as true or false negative. Results The AUC was 0.93 (95% CI: 0.92–0.94) for model A and B when including screen-detected and interval cancers. Model A identified 82.5% (611/741) of the screen-detected cancers at threshold 1 and 92.4% (685/741) at threshold 2. For model B, the numbers were 81.8% (606/741) and 93.7% (694/741), respectively. The AI markings were correctly localized for all screen-detected cancers identified by both models and 82% (56/68) of the interval cancers for model A and 79% (54/68) for B. At the review, 21.6% (45/208) of the interval cancers were identified at the preceding screening by either or both models, correctly localized and classified as false negative ( n = 17) or with minimal signs of malignancy ( n = 28). Conclusion Both AI models showed promising performance for cancer detection on screening mammograms. The AI markings corresponded well to the true cancer locations. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
curry完成签到 ,获得积分10
3秒前
曦梦源完成签到 ,获得积分10
4秒前
雾散完成签到,获得积分10
6秒前
一团小煤球完成签到,获得积分10
7秒前
9秒前
11秒前
李健应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
Lee完成签到,获得积分10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
13秒前
13秒前
cdercder应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
lhx完成签到,获得积分10
13秒前
13秒前
缥缈的砖头完成签到 ,获得积分10
14秒前
无限的千凝完成签到 ,获得积分10
15秒前
温乘云完成签到,获得积分10
16秒前
zhiqing完成签到 ,获得积分10
21秒前
卞卞发布了新的文献求助10
21秒前
love发布了新的文献求助20
22秒前
hs完成签到,获得积分10
24秒前
四夕完成签到 ,获得积分10
25秒前
27秒前
lemon完成签到,获得积分10
28秒前
科研通AI5应助彩色草莓采纳,获得10
30秒前
30秒前
酷酷映冬完成签到 ,获得积分10
31秒前
lemon发布了新的文献求助10
32秒前
ComeOn发布了新的文献求助10
33秒前
Albee发布了新的文献求助10
34秒前
34秒前
35秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321712
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680119
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445