Dynamic maintenance scheduling approach under uncertainty: Comparison between reinforcement learning, genetic algorithm simheuristic, dispatching rules

计算机科学 强化学习 调度(生产过程) 元启发式 作业车间调度 数学优化 遗传算法 人工智能 机器学习 数学 地铁列车时刻表 操作系统
作者
Marcelo Luis Ruiz-Rodríguez,Sylvain Kubler,Jérémy Robert,Yves Le Traon
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123404-123404 被引量:19
标识
DOI:10.1016/j.eswa.2024.123404
摘要

Maintenance planning and scheduling are an essential part of manufacturing companies to prevent machine breakdowns and increase machine uptime, along with production efficiency. One of the biggest challenges is to effectively address uncertainty (e.g., unexpected machine failures, variable time to repair). Multiple approaches have been used to solve the maintenance scheduling problem, including dispatching rules (DR), metaheuristics and simheuristics, or most recently reinforcement learning (RL). However, to the best of our knowledge, no study has ever studied to what extent these techniques are effective when faced with different levels of uncertainty. To overcome this gap in research, this paper presents an approach by analyzing the impact of categorized levels of uncertainty, specifically high and low, on the failure distribution and time to repair. Upon the formalization of the maintenance scheduling problem, the experiments conducted are performed in simulated scenarios with different degrees of uncertainty, and also considering a real-life manufacturing use case. The results indicate that rescheduling based on a genetic algorithm (GA) simheuristic outperforms RL and DR in terms of total machine uptime, but not in terms of the mean time to repair when configured with high re-optimization frequencies (i.e., hourly re-optimization), but rapidly underperforms when the re-optimization frequency decreases. Furthermore, our study demonstrates that GA-simheuristic is highly computationally demanding compared to RL and rule-based policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小井盖完成签到 ,获得积分10
1秒前
11111完成签到,获得积分10
1秒前
舒心妙旋完成签到,获得积分10
2秒前
xlx应助科研通管家采纳,获得10
3秒前
xlx应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
xlx应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
xlx应助科研通管家采纳,获得10
3秒前
Lny应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
xlx应助科研通管家采纳,获得10
3秒前
healthy应助科研通管家采纳,获得10
3秒前
3秒前
xlx应助科研通管家采纳,获得10
3秒前
4秒前
谢大喵发布了新的文献求助10
5秒前
12138发布了新的文献求助10
5秒前
an完成签到,获得积分10
6秒前
8秒前
升龙击完成签到,获得积分10
8秒前
9秒前
小马甲应助小马采纳,获得10
12秒前
12138完成签到,获得积分10
15秒前
周小熊完成签到 ,获得积分10
15秒前
大模型应助yushiolo采纳,获得10
15秒前
明天见完成签到,获得积分10
16秒前
16秒前
tian发布了新的文献求助10
17秒前
小蘑菇应助老福贵儿采纳,获得30
20秒前
2号完成签到,获得积分10
21秒前
爆米花应助Ania99采纳,获得10
21秒前
dddyyyn完成签到 ,获得积分10
21秒前
机灵凌雪完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851