博格达诺夫-塔肯分岔
同宿分支
数学
捕食
霍普夫分叉
跨临界分岔
同宿轨道
分叉
余维数
分叉理论的生物学应用
鞍结分岔
干草叉分叉
应用数学
控制理论(社会学)
数学分析
生态学
物理
生物
非线性系统
计算机科学
人工智能
量子力学
控制(管理)
标识
DOI:10.1142/s0218127424500214
摘要
In this paper, we study the codimensions of Hopf bifurcation and Bogdanov–Takens bifurcation of a predator–prey model with alternative prey and prey refuges, which was proposed by Chen et al. [ 2023 ]. The results show that the predator–prey model can undergo a supercritical Hopf bifurcation or a Bogdanov–Takens bifurcation of codimension two under certain parameter conditions. It means that there are some predator–prey models with an alternative prey and prey refuges which have a limit cycle or a homoclinic loop. Moreover, it is also shown that the codimension of Hopf bifurcation is at most one and codimension of Bogdanov–Takens bifurcation is at most two.
科研通智能强力驱动
Strongly Powered by AbleSci AI