MedM2G: Unifying Medical Multi-Modal Generation via Cross-Guided Diffusion with Visual Invariant

情态动词 不变(物理) 计算机科学 物理 化学 数学物理 高分子化学
作者
Chenlu Zhan,Yu Lin,Gaoang Wang,Hongwei Wang,Jian Wu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.04290
摘要

Medical generative models, acknowledged for their high-quality sample generation ability, have accelerated the fast growth of medical applications. However, recent works concentrate on separate medical generation models for distinct medical tasks and are restricted to inadequate medical multi-modal knowledge, constraining medical comprehensive diagnosis. In this paper, we propose MedM2G, a Medical Multi-Modal Generative framework, with the key innovation to align, extract, and generate medical multi-modal within a unified model. Extending beyond single or two medical modalities, we efficiently align medical multi-modal through the central alignment approach in the unified space. Significantly, our framework extracts valuable clinical knowledge by preserving the medical visual invariant of each imaging modal, thereby enhancing specific medical information for multi-modal generation. By conditioning the adaptive cross-guided parameters into the multi-flow diffusion framework, our model promotes flexible interactions among medical multi-modal for generation. MedM2G is the first medical generative model that unifies medical generation tasks of text-to-image, image-to-text, and unified generation of medical modalities (CT, MRI, X-ray). It performs 5 medical generation tasks across 10 datasets, consistently outperforming various state-of-the-art works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康康星发布了新的文献求助30
1秒前
2秒前
CC发布了新的文献求助30
2秒前
2秒前
小超超发布了新的文献求助10
4秒前
荣誉完成签到,获得积分10
4秒前
4秒前
vlots举报小周求助涉嫌违规
5秒前
帝钰完成签到,获得积分10
5秒前
希格玻色子完成签到,获得积分10
5秒前
allen完成签到,获得积分10
5秒前
123td发布了新的文献求助10
5秒前
5秒前
大惊完成签到,获得积分10
6秒前
科研通AI5应助XHL采纳,获得10
6秒前
6秒前
¥#¥-11完成签到,获得积分10
7秒前
7秒前
传奇3应助健壮道天采纳,获得10
7秒前
断绝的发布了新的文献求助10
7秒前
田様应助zyh采纳,获得10
7秒前
vincy完成签到 ,获得积分10
7秒前
8秒前
Clover发布了新的文献求助10
8秒前
Akim应助长毛小狮子采纳,获得10
8秒前
LOVE0077完成签到,获得积分10
9秒前
9秒前
xue完成签到,获得积分10
9秒前
9秒前
10秒前
善学以致用应助魔幻采梦采纳,获得10
10秒前
华仔应助gao采纳,获得10
11秒前
11秒前
蛙蛙完成签到 ,获得积分10
12秒前
YQP完成签到,获得积分10
12秒前
13秒前
orixero应助CC采纳,获得10
13秒前
XHL完成签到,获得积分10
14秒前
14秒前
demo1发布了新的文献求助10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838043
求助须知:如何正确求助?哪些是违规求助? 3380287
关于积分的说明 10513442
捐赠科研通 3099903
什么是DOI,文献DOI怎么找? 1707264
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772750