MathEagle: Accurate prediction of drug-drug interaction events via multi-head attention and heterogeneous attribute graph learning

计算机科学 药品 成对比较 机器学习 图形 图嵌入 人工智能 药物与药物的相互作用 稳健性(进化) 嵌入 医学 理论计算机科学 药理学 生物化学 化学 基因
作者
Lin-Xuan Hou,Hai-Cheng Yi,Zhu‐Hong You,Shihong Chen,Jia Zheng,Chee Keong Kwoh
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:177: 108642-108642 被引量:9
标识
DOI:10.1016/j.compbiomed.2024.108642
摘要

Drug-drug interaction events influence the effectiveness of drug combinations and can lead to unexpected side effects or exacerbate underlying diseases, jeopardizing patient prognosis. Most existing methods are restricted to predicting whether two drugs interact or the type of drug-drug interactions, while very few studies endeavor to predict the specific risk levels of side effects of drug combinations. In this study, we propose MathEagle, a novel approach to predict accurate risk levels of drug combinations based on multi-head attention and heterogeneous attribute graph learning. Initially, we model drugs and three distinct risk levels between drugs as a heterogeneous information graph. Subsequently, behavioral and chemical structure features of drugs are utilized by message passing neural networks and graph embedding algorithms, respectively. Ultimately, MathEagle employs heterogeneous graph convolution and multi-head attention mechanisms to learn efficient latent representations of drug nodes and estimates the risk levels of pairwise drugs in an end-to-end manner. To assess the effectiveness and robustness of the model, five-fold cross-validation, ablation experiments, and case studies were conducted. MathEagle achieved an accuracy of 85.85% and an AUC of 0.9701 on the drug risk level prediction task and is superior to all comparative models. The MathEagle predictor is freely accessible at http://120.77.11.78/MathEagle/. The experimental results indicate that MathEagle can function as an effective tool for predicting accurate risk of drug combinations, aiding in guiding clinical medication, and enhancing patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荼蘼完成签到,获得积分10
刚刚
刚刚
伊冯发布了新的文献求助10
1秒前
可咳咳咳完成签到,获得积分10
1秒前
完美麦片完成签到,获得积分10
1秒前
所所应助拉长的芷烟采纳,获得10
2秒前
老实奇迹发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
zhang完成签到,获得积分10
3秒前
puppy完成签到,获得积分10
3秒前
巧珍完成签到,获得积分10
3秒前
FashionBoy应助Tracy采纳,获得10
4秒前
伶俐的星月完成签到,获得积分10
4秒前
Summer完成签到,获得积分10
5秒前
三寸光阴一个鑫应助甫文采纳,获得10
5秒前
zengxiaoyan完成签到,获得积分10
5秒前
冰阔罗发布了新的文献求助10
5秒前
科研通AI6应助Icarus采纳,获得10
5秒前
jimey完成签到,获得积分10
6秒前
语鱼完成签到,获得积分10
6秒前
6秒前
7秒前
开放的丹云完成签到,获得积分10
7秒前
O已w时o完成签到 ,获得积分10
8秒前
jiaoqi发布了新的文献求助10
9秒前
9秒前
9秒前
就爱喝点冰的完成签到,获得积分10
9秒前
万能图书馆应助bear采纳,获得10
10秒前
浮游应助Ray采纳,获得10
10秒前
momo发布了新的文献求助20
10秒前
梧桐雨发布了新的文献求助10
11秒前
12秒前
13秒前
hins发布了新的文献求助10
13秒前
13秒前
科研通AI6应助刘一一采纳,获得10
14秒前
14秒前
Jasper应助小锦章采纳,获得30
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5487807
求助须知:如何正确求助?哪些是违规求助? 4586901
关于积分的说明 14411852
捐赠科研通 4518025
什么是DOI,文献DOI怎么找? 2475465
邀请新用户注册赠送积分活动 1461303
关于科研通互助平台的介绍 1434141