Charge Self-Regulation at the Interface Engineering of the Metallic Heterostructure NiCoP@Co3S4 for Efficient Alkaline Overall Water Splitting

材料科学 异质结 金属 分解水 电荷(物理) 接口(物质) 光电子学 工程物理 光催化 复合材料 冶金 生物化学 化学 物理 量子力学 毛细管数 毛细管作用 工程类 催化作用
作者
Huanhui He,Dejian Zhu,Cong Huang,Ge Chang,Qian Yang,Minghao Ran,Aiping Hu,Xiaohua Chen,Qunli Tang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.5c01834
摘要

Developing heterostructures with high electrical conductivity and appropriate adsorption strength for oxygen intermediates is a crucial strategy to reduce the energy consumption of overall water splitting (OWS) and enhance the economic viability of hydrogen energy. This article proposes a novel metallic heterostructure (NiCoP@Co3S4) that is in situ grown on nickel foam. The composite of NiCoP and Co3S4 not only promotes effective charge transfer in the heterojunction and accelerates the kinetics of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) but also optimizes the electronic structure of the catalyst through interface engineering. Density functional theory (DFT) calculations demonstrate that the formation of the heterostructure significantly increases the density of electronic states near the Fermi level (EF), thereby enhancing conductivity. Moreover, the d-band center of NiCoP@Co3S4 shifts closer to EF, which enhances the binding strength of reaction intermediates to the catalyst's active sites. This shift lowers the reaction activation energy and thus promotes the catalytic process. Experimental results show that the NiCoP@Co3S4 heterostructure exhibits excellent performance in both HER (η10 = 62 mV) and OER (η10 = 203 mV). An electrolyzer composed of NiCoP@Co3S4 electrodes requires only a potential of 1.48 V to achieve a current density of 10 mA cm-2. Additionally, it demonstrates good stability over 100 h of testing, outperforming the Pt/C || RuO2 catalyst (1.51 V@10 mA cm-2). This work provides an effective approach to achieving efficient water splitting for hydrogen production at low overpotentials through the self-regulation of charge in heterostructures, offering new insights for the design of efficient non-noble metal-based electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助苏苏诺诺2023采纳,获得20
1秒前
lili完成签到 ,获得积分10
2秒前
3秒前
4秒前
李琛完成签到,获得积分10
7秒前
jie完成签到,获得积分10
8秒前
9秒前
DNA甲基转移酶完成签到,获得积分10
9秒前
芒果完成签到,获得积分10
10秒前
靓丽馒头发布了新的文献求助10
10秒前
狂野砖头完成签到 ,获得积分10
10秒前
浅草完成签到,获得积分20
11秒前
SciGPT应助成就飞柏采纳,获得10
12秒前
CipherSage应助瘤子采纳,获得10
12秒前
缓慢梦秋发布了新的文献求助10
14秒前
顺心的惜蕊完成签到 ,获得积分10
14秒前
机灵安白完成签到,获得积分10
14秒前
啦啦啦完成签到,获得积分10
15秒前
hahahahaha完成签到,获得积分10
15秒前
16秒前
yps完成签到 ,获得积分10
17秒前
栗子呢呢呢完成签到 ,获得积分10
17秒前
19秒前
19秒前
谨慎飞丹完成签到 ,获得积分0
20秒前
JIANJUNZHOU完成签到,获得积分10
20秒前
BiuBiuBiu完成签到 ,获得积分10
20秒前
幺幺零五完成签到,获得积分10
21秒前
DC完成签到,获得积分10
21秒前
七七完成签到,获得积分10
21秒前
Jake完成签到,获得积分10
21秒前
23秒前
希望天下0贩的0应助ZZzz采纳,获得10
23秒前
23秒前
24秒前
htm426发布了新的文献求助10
24秒前
江幻天发布了新的文献求助10
25秒前
张豪杰发布了新的文献求助10
26秒前
达不溜qp完成签到 ,获得积分10
26秒前
27秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825159
求助须知:如何正确求助?哪些是违规求助? 3367460
关于积分的说明 10445838
捐赠科研通 3086844
什么是DOI,文献DOI怎么找? 1698328
邀请新用户注册赠送积分活动 816688
科研通“疑难数据库(出版商)”最低求助积分说明 769937