Interfacial role of Ionic liquids in CO2 electrocatalytic Reduction: A mechanistic investigation

过电位 离子液体 溶剂化 分子 化学物理 离子键合 氢键 化学 分子动力学 溶剂 工作(物理) 屏障激活 电极 物理化学 计算化学 催化作用 电化学 离子 热力学 有机化学 物理
作者
Shuai Guo,Yawei Liu,Yanlei Wang,Kun Dong,Xiangping Zhang,Suojiang Zhang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:457: 141076-141076 被引量:12
标识
DOI:10.1016/j.cej.2022.141076
摘要

Ionic liquids (ILs) can significantly reduce the overpotential of CO2 electrocatalytic reduction reaction (CO2RR) and thus show a huge application potential in the CO2 conversion. However, it has not been clear what role ILs play in the reaction occurring at the solid–liquid interface of the electrodes. In this work, we performed comprehensive DFT calculations to investigate the mechanism of CO2RR to CO on Ag electrode surfaces with ILs. Our results showed that the Ag(1 1 0) surface exhibits better catalytic performance than both Ag(1 0 0) and Ag(1 1 1) surfaces since the energy barrier of the transition state (Ts) is lower and the intermediate (*COOH) is more stable on the former surface. When ILs exist near the surface, the energy barrier of the Ts decreases and varies when the CO2 molecule is localized at different positions of the [Emim]+ cation. The optimized structures showed that the CO2 molecule prefers to stay near the C4/5 position rather than the C2 position. It was also found that proton transferring on the Ag surface by the hydrogen bond mode has a lower energy barrier than the shuttling mode, which indicates that the IL can act as an assist-catalyst by forming hydrogen-bonding complex in the reaction. Furthermore, the role of water was explored by using the implicit-solvent model. It was found that the solvation effect of the water always decreases the energy barrier, and the decline is more pronounced when there are ILs. Molecular dynamics (MD) simulations also showed that near the electrode surface, each CO2 molecule is enclosed by 3–4 [Emim]+ cations with their C4/5 more likely approaching the CO2. Such a distribution embodies the mesoscale multi-ions synergistic catalytic mechanism that will be elucidated in our future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力笑天完成签到,获得积分20
1秒前
8899发布了新的文献求助10
1秒前
congcong发布了新的文献求助10
6秒前
在水一方应助holly采纳,获得10
6秒前
田田完成签到 ,获得积分10
6秒前
追寻谷兰发布了新的文献求助10
11秒前
11秒前
12秒前
听话的代芙完成签到 ,获得积分10
12秒前
12秒前
Louxuejie发布了新的文献求助10
13秒前
13秒前
Mikey完成签到,获得积分20
13秒前
Accept完成签到,获得积分10
15秒前
16秒前
BK发布了新的文献求助10
17秒前
现代觅珍发布了新的文献求助10
18秒前
10711完成签到,获得积分10
19秒前
21秒前
SAKURA完成签到 ,获得积分10
21秒前
22秒前
自然雁风完成签到,获得积分10
23秒前
LeiYu完成签到 ,获得积分10
23秒前
半壶月色半边天完成签到 ,获得积分10
23秒前
非洲三巨头完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
21完成签到 ,获得积分10
26秒前
xxi发布了新的文献求助10
26秒前
逆风行SXDZ发布了新的文献求助10
27秒前
隔壁小王完成签到,获得积分10
27秒前
科目三应助QinQin采纳,获得10
28秒前
结实灭男发布了新的文献求助10
30秒前
小马甲应助风中怜雪采纳,获得10
30秒前
阳6完成签到 ,获得积分10
30秒前
科研牛马完成签到,获得积分10
31秒前
Owen应助老实白云采纳,获得10
32秒前
现代觅珍完成签到,获得积分10
32秒前
33秒前
所所应助xxi采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637884
求助须知:如何正确求助?哪些是违规求助? 4744268
关于积分的说明 15000613
捐赠科研通 4796097
什么是DOI,文献DOI怎么找? 2562306
邀请新用户注册赠送积分活动 1521844
关于科研通互助平台的介绍 1481714