亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolution Network with Custom Loss Function for the Denoising of Low SNR Raman Spectra

拉曼光谱 卷积(计算机科学) 降噪 功能(生物学) 计算机科学 算法 电子工程 材料科学 人工智能 工程类 物理 光学 人工神经网络 进化生物学 生物
作者
Sinead J. Barton,Salaheddin Alakkari,Kevin O’Dwyer,Tomás E. Ward,Bryan M. Hennelly
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:21 (14): 4623-4623 被引量:35
标识
DOI:10.3390/s21144623
摘要

Raman spectroscopy is a powerful diagnostic tool in biomedical science, whereby different disease groups can be classified based on subtle differences in the cell or tissue spectra. A key component in the classification of Raman spectra is the application of multi-variate statistical models. However, Raman scattering is a weak process, resulting in a trade-off between acquisition times and signal-to-noise ratios, which has limited its more widespread adoption as a clinical tool. Typically denoising is applied to the Raman spectrum from a biological sample to improve the signal-to-noise ratio before application of statistical modeling. A popular method for performing this is Savitsky-Golay filtering. Such an algorithm is difficult to tailor so that it can strike a balance between denoising and excessive smoothing of spectral peaks, the characteristics of which are critically important for classification purposes. In this paper, we demonstrate how Convolutional Neural Networks may be enhanced with a non-standard loss function in order to improve the overall signal-to-noise ratio of spectra while limiting corruption of the spectral peaks. Simulated Raman spectra and experimental data are used to train and evaluate the performance of the algorithm in terms of the signal to noise ratio and peak fidelity. The proposed method is demonstrated to effectively smooth noise while preserving spectral features in low intensity spectra which is advantageous when compared with Savitzky-Golay filtering. For low intensity spectra the proposed algorithm was shown to improve the signal to noise ratios by up to 100% in terms of both local and overall signal to noise ratios, indicating that this method would be most suitable for low light or high throughput applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
bkagyin应助zzh采纳,获得10
15秒前
LUZ七月发布了新的文献求助10
20秒前
20秒前
康康发布了新的文献求助20
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
43秒前
Lucas应助悟空采纳,获得10
48秒前
zzh发布了新的文献求助10
50秒前
make217完成签到 ,获得积分10
56秒前
andrele发布了新的文献求助10
1分钟前
1分钟前
简称王完成签到 ,获得积分10
1分钟前
1分钟前
852应助LUZ七月采纳,获得10
1分钟前
LUZ七月完成签到,获得积分10
1分钟前
无情的羊青完成签到,获得积分10
1分钟前
华仔应助andrele采纳,获得10
1分钟前
怡然念之完成签到 ,获得积分10
2分钟前
agent完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
依古比古完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
andrele发布了新的文献求助10
3分钟前
budingman发布了新的文献求助10
3分钟前
无限的灵安完成签到,获得积分20
3分钟前
xpqiu完成签到,获得积分10
3分钟前
杨无敌完成签到 ,获得积分10
3分钟前
dax大雄完成签到 ,获得积分10
3分钟前
3分钟前
满意花卷完成签到 ,获得积分10
3分钟前
月儿完成签到 ,获得积分10
3分钟前
慕青应助欣欣采纳,获得10
4分钟前
科研通AI5应助俏皮的曼安采纳,获得10
4分钟前
4分钟前
hua完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788218
求助须知:如何正确求助?哪些是违规求助? 3333659
关于积分的说明 10262932
捐赠科研通 3049526
什么是DOI,文献DOI怎么找? 1673586
邀请新用户注册赠送积分活动 802070
科研通“疑难数据库(出版商)”最低求助积分说明 760504