Convolution Network with Custom Loss Function for the Denoising of Low SNR Raman Spectra

拉曼光谱 卷积(计算机科学) 降噪 功能(生物学) 计算机科学 算法 电子工程 材料科学 人工智能 工程类 物理 光学 人工神经网络 进化生物学 生物
作者
Sinead J. Barton,Salaheddin Alakkari,Kevin O’Dwyer,Tomás E. Ward,Bryan M. Hennelly
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:21 (14): 4623-4623 被引量:35
标识
DOI:10.3390/s21144623
摘要

Raman spectroscopy is a powerful diagnostic tool in biomedical science, whereby different disease groups can be classified based on subtle differences in the cell or tissue spectra. A key component in the classification of Raman spectra is the application of multi-variate statistical models. However, Raman scattering is a weak process, resulting in a trade-off between acquisition times and signal-to-noise ratios, which has limited its more widespread adoption as a clinical tool. Typically denoising is applied to the Raman spectrum from a biological sample to improve the signal-to-noise ratio before application of statistical modeling. A popular method for performing this is Savitsky-Golay filtering. Such an algorithm is difficult to tailor so that it can strike a balance between denoising and excessive smoothing of spectral peaks, the characteristics of which are critically important for classification purposes. In this paper, we demonstrate how Convolutional Neural Networks may be enhanced with a non-standard loss function in order to improve the overall signal-to-noise ratio of spectra while limiting corruption of the spectral peaks. Simulated Raman spectra and experimental data are used to train and evaluate the performance of the algorithm in terms of the signal to noise ratio and peak fidelity. The proposed method is demonstrated to effectively smooth noise while preserving spectral features in low intensity spectra which is advantageous when compared with Savitzky-Golay filtering. For low intensity spectra the proposed algorithm was shown to improve the signal to noise ratios by up to 100% in terms of both local and overall signal to noise ratios, indicating that this method would be most suitable for low light or high throughput applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助洛苏采纳,获得10
1秒前
1秒前
慕青应助小达采纳,获得10
2秒前
2秒前
xujy完成签到,获得积分10
3秒前
淡然的冷松完成签到 ,获得积分10
3秒前
xiuxiu发布了新的文献求助10
5秒前
chen le完成签到,获得积分10
5秒前
6秒前
背后凝竹完成签到 ,获得积分10
6秒前
bounlent完成签到 ,获得积分10
7秒前
牟英杰完成签到,获得积分10
8秒前
汉堡包应助corrine1426采纳,获得10
8秒前
8秒前
9秒前
9秒前
完美世界应助无敌风火轮采纳,获得10
10秒前
香蕉觅云应助坦率灵槐采纳,获得10
10秒前
12秒前
13秒前
lw完成签到,获得积分10
13秒前
李冬卿完成签到,获得积分10
14秒前
风筝完成签到,获得积分10
14秒前
赘婿应助挽风风风风采纳,获得10
14秒前
y2ktwo发布了新的文献求助10
15秒前
lw发布了新的文献求助10
16秒前
16秒前
17秒前
科研通AI6应助发文必过采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
晴明关发布了新的文献求助100
19秒前
佳佳发布了新的文献求助10
20秒前
蛋卷大王完成签到 ,获得积分10
20秒前
20秒前
威武曼安发布了新的文献求助10
20秒前
所所应助杨仲文采纳,获得10
21秒前
汉堡包应助liuliu采纳,获得30
21秒前
CipherSage应助李西瓜采纳,获得10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132497
求助须知:如何正确求助?哪些是违规求助? 4333918
关于积分的说明 13502513
捐赠科研通 4170952
什么是DOI,文献DOI怎么找? 2286755
邀请新用户注册赠送积分活动 1287645
关于科研通互助平台的介绍 1228540