化学
吸附
针铁矿
溶解有机碳
水溶液
高岭石
傅里叶变换红外光谱
聚苯乙烯
粘土矿物
环境化学
化学工程
有机化学
矿物学
聚合物
工程类
出处
期刊:Water Research
[Elsevier]
日期:2020-09-19
卷期号:187: 116426-116426
被引量:143
标识
DOI:10.1016/j.watres.2020.116426
摘要
Microplastic (MP) pollution is an increasing global problem due to the ubiquity of these particles in the environment and the uncertainty surrounding their fate. Most MPs undergo extensive weathering in the environment, which may result in the release of dissolved organic matter (DOM) into the aqueous phase. In this study, for the first time, we examined the adsorptive behavior of MP-derived DOM (MP-DOM) on minerals (kaolinite and goethite) using DOM samples leached from commercial plastics including polyvinylchloride (PVC) and polystyrene (PS) under dark and ultraviolet (UV) irradiation conditions. MP-DOM was characterized by a higher distribution of relatively smaller-sized molecules than natural organic matter (NOM). The PS-derived DOM (PS-DOM) leached under UV treatment exhibited more oxygen-containing groups than their counterparts in the dark. MP-DOM also exhibited net negative charges at neutral pH ranges. Adsorption isotherm experiments revealed that the mineral surfaces had high adsorption affinities for both types of MP-DOM, which is likely associated with both electrostatic attraction and ligand exchange. The extent of adsorption was greater for the UV-irradiated than the dark-treated DOM, and on goethite compared to kaolinite. The Fourier-transform infrared (FTIR) spectra of the residual PS-DOM after adsorption revealed differences in the adsorption affinities between its functional groups. Two-dimensional correlation spectroscopy for the irradiated PS-DOM showed that preferential adsorption occurred on minerals in the sequential order of oxidized structures → (PS monomers) → carboxylates in additives → carbonyl groups. The adsorption isotherm model parameters for MP-DOM were comparable to those obtained from aquatic/terrestrial NOM, which suggests that plastic-derived DOM can interact with minerals as strongly as NOM. This study highlights the overlooked role played by plastic-derived DOM in mineral-enriched environments, opening new opportunities for improving our understanding of the fate and environmental impacts of MPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI