Predicting recurrence and recurrence‐free survival in high‐grade endometrial cancer using machine learning

医学 比例危险模型 随机森林 接收机工作特性 子宫内膜癌 Lasso(编程语言) 人工智能 阶段(地层学) 辅助治疗 生存分析 统计 癌症 肿瘤科 外科 内科学 数学 计算机科学 古生物学 万维网 生物
作者
Sabrina Piedimonte,Tomer Feigenberg,Erik Drysdale,Janice S. Kwon,Walter H. Gotlieb,Béatrice Cormier,Marie Plante,Susie Lau,Limor Helpman,Marie‐Claude Renaud,Taymaa May,Danielle Vicus
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:126 (6): 1096-1103 被引量:6
标识
DOI:10.1002/jso.27008
摘要

To develop machine-learning models to predict recurrence and time-to-recurrence in high-grade endometrial cancer (HGEC) following surgery and tailored adjuvant treatment.Data were retrospectively collected across eight Canadian centers including 1237 patients. Four models were trained to predict recurrence: random forests, boosted trees, and two neural networks. Receiver operating characteristic curves were used to select the best model based on the highest area under the curve (AUC). For time to recurrence, we compared random forests and Least Absolute Shrinkage and Selection Operator (LASSO) model to Cox proportional hazards.The random forest was the best model to predict recurrence in HGEC; the AUCs were 85.2%, 74.1%, and 71.8% in the training, validation, and test sets, respectively. The top five predictors were: stage, uterus height, specimen weight, adjuvant chemotherapy, and preoperative histology. Performance increased to 77% and 80% when stratified by Stage III and IV, respectively. For time to recurrence, there was no difference between the LASSO and Cox proportional hazards models (c-index 71%). The random forest had a c-index of 60.5%.A bootstrap random forest model may be a more accurate technique to predict recurrence in HGEC using multiple clinicopathologic factors. For time to recurrence, machine-learning methods performed similarly to the Cox proportional hazards model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助是叶暖晚秋哇采纳,获得10
刚刚
怕黑向秋完成签到,获得积分10
刚刚
Even9完成签到,获得积分0
刚刚
1秒前
zzzzzz发布了新的文献求助10
1秒前
尤珩发布了新的文献求助10
1秒前
2秒前
li-naer发布了新的文献求助10
2秒前
爆米花应助dzz采纳,获得10
3秒前
云悠水澈完成签到,获得积分10
3秒前
3秒前
3秒前
东方巧曼发布了新的文献求助10
4秒前
ding应助疯花血月采纳,获得10
4秒前
怕黑向秋发布了新的文献求助10
4秒前
yueyezhulin发布了新的文献求助10
5秒前
5秒前
5秒前
acb完成签到,获得积分10
5秒前
6秒前
答题不卡完成签到,获得积分20
6秒前
马小翠发布了新的文献求助30
7秒前
我喜欢大学霸完成签到,获得积分10
7秒前
7秒前
感性的神级完成签到,获得积分10
8秒前
鳗鱼小小发布了新的文献求助30
8秒前
爱吃肉夹馍应助li-naer采纳,获得20
8秒前
铁盐君完成签到,获得积分10
8秒前
8秒前
learn发布了新的文献求助10
9秒前
liuyan0316发布了新的文献求助10
9秒前
Jasper应助虚拟的惜筠采纳,获得10
9秒前
搜集达人应助细心的抽屉采纳,获得10
9秒前
9秒前
azhu发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
方向发布了新的文献求助10
11秒前
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809784
求助须知:如何正确求助?哪些是违规求助? 3354374
关于积分的说明 10369891
捐赠科研通 3070592
什么是DOI,文献DOI怎么找? 1686492
邀请新用户注册赠送积分活动 810967
科研通“疑难数据库(出版商)”最低求助积分说明 766448