Sliding mode online learning for flight control applications in unmanned aerial systems

前馈 计算机科学 人工神经网络 反向传播 控制器(灌溉) 控制工程 控制系统 自动化 前馈神经网络 滑模控制 逆动力学 控制理论(社会学) 人工智能 工程类 控制(管理) 非线性系统 物理 电气工程 生物 机械工程 经典力学 量子力学 运动学 农学
作者
Thomas Krüger,Michael Mößner,Andreas Kuhn,Joachim Axmann,Peter Vörsmann
标识
DOI:10.1109/ijcnn.2010.5596534
摘要

Implementing adaptive flight control strategies into unmanned aerial systems (UAS) contains a high potential to improve the degree of automation. This is especially the case regarding automatic operation under difficult atmospheric conditions or even system failures. A neural control strategy enables the UAS to improve its flight characteristics and to respond to unknown, non-linear flight conditions. Here, a learning flight control system for a fixed-wing UAS is realised using a systematic two-stage approach by firstly implementing a sustainable offline-trained basic knowledge and subsequently improving these characteristics during flight. Within the automated offline-step large groups of neural networks are trained with the required behaviour, which is derived from measured data. This phase shows that the necessary learning task can be achieved by multi-layered feedforward-networks. The training success of all networks is then evaluated with statistical methods and networks are selected for online application. The online learning step is realised with a control architecture comprising a neural network controller and a neural observer which predicts the system's dynamics and delivers the training signal for the contoller network. An important element of the control strategy is to determine a consistent error signal for the online training of the neural controller. This is done by backpropagation of a measured error through the inverse dynamics of the observer network. Since the inverse dynamics have to be very precise in order to train the controller adequately, a stable sliding mode control (SMC) algorithm for network training is introduced. This online adptive algorithm significantly improves the observer's charcteristics and with it the system's performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loomcool完成签到,获得积分10
刚刚
端端完成签到,获得积分10
刚刚
AAA1798发布了新的文献求助10
刚刚
ASHhan111完成签到,获得积分10
1秒前
1秒前
香蕉觅云应助EnnoEven采纳,获得10
1秒前
开心的西瓜完成签到,获得积分10
1秒前
白桃乌龙完成签到,获得积分10
2秒前
是阿龙呀完成签到,获得积分10
2秒前
欣晴完成签到,获得积分10
2秒前
隐形千愁发布了新的文献求助10
3秒前
DueDue0327完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
今后应助carly采纳,获得10
5秒前
zhouleibio完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
CruiSk发布了新的文献求助20
8秒前
Triones完成签到,获得积分10
8秒前
老王完成签到,获得积分10
8秒前
淡定汉堡发布了新的文献求助10
8秒前
是风动完成签到 ,获得积分10
8秒前
英俊的高跟鞋完成签到,获得积分10
8秒前
9秒前
酷炫的谷丝完成签到,获得积分10
9秒前
za==发布了新的文献求助10
9秒前
猪猪大王完成签到,获得积分10
9秒前
10秒前
10秒前
西科Jeremy发布了新的文献求助10
10秒前
10秒前
忐忑的迎蓉完成签到 ,获得积分10
11秒前
我爱学习发布了新的文献求助10
11秒前
冯杰完成签到,获得积分10
11秒前
orixero应助tyro采纳,获得30
12秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841160
求助须知:如何正确求助?哪些是违规求助? 3383161
关于积分的说明 10528368
捐赠科研通 3103115
什么是DOI,文献DOI怎么找? 1709122
邀请新用户注册赠送积分活动 822971
科研通“疑难数据库(出版商)”最低求助积分说明 773728