A Novel UV-Shielding and Transparent Polymer Film: When Bioinspired Dopamine–Melanin Hollow Nanoparticles Join Polymers

材料科学 聚合物 纳米颗粒 乙烯醇 化学工程 聚合 紫外线 纳米复合材料 聚苯乙烯 光降解 纳米技术 电磁屏蔽 光催化 复合材料 光电子学 有机化学 化学 工程类 催化作用
作者
Yang Wang,Jing Su,Ting Li,Piming Ma,Huiyu Bai,Yi Xie,Mingqing Chen,Weifu Dong
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:9 (41): 36281-36289 被引量:247
标识
DOI:10.1021/acsami.7b08763
摘要

Ultraviolet (UV) light is known to be harmful to human health and cause organic materials to undergo photodegradation. In this Research Article, bioinspired dopamine–melanin solid nanoparticles (Dpa-s NPs) and hollow nanoparticles (Dpa-h NPs) as UV-absorbers were introduced to enhance the UV-shielding performance of polymer. First, Dpa-s NPs were synthesized through autoxidation of dopamine in alkaline aqueous solution. Dpa-h NPs were prepared by the spontaneous oxidative polymerization of dopamine solution onto polystyrene (PS) nanospheres template, followed by removal of the template. Poly(vinyl alcohol) (PVA)/Dpa nanocomposite films were subsequently fabricated by a simple casting solvent. UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of Dpa-s versus Dpa-h NPs. In contrast to PVA/Dpa-s films, PVA/Dpa-h films exhibit stronger UV-shielding capabilities and can almost block the complete UV region (200–400 nm). The excellent UV-shielding performance of the PVA/Dpa-h films mainly arises from multiple absorption because of the hollow structure and large specific area of Dpa-h NPs. Moreover, the wall thickness of Dpa-h NPs can be simply controlled from 28 to 8 nm, depending on the ratio between PS and dopamine. The resulting films with Dpa-h NPs (wall thickness = ∼8 nm) maintained relatively high transparency to visible light because of the thinner wall thickness. The results indicate that the prepared Dpa-h NPs can be used as a novel UV absorber for next-generation transparent UV-shielding materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
群山完成签到 ,获得积分10
1秒前
HDrinnk完成签到,获得积分10
3秒前
小婕是小婕完成签到,获得积分10
3秒前
欣喜柚子完成签到 ,获得积分10
4秒前
乐乐应助Lucy采纳,获得30
5秒前
南城花开完成签到 ,获得积分10
5秒前
科研小破白菜完成签到,获得积分10
6秒前
桐桐完成签到,获得积分0
6秒前
无心的仙人掌完成签到,获得积分20
6秒前
6秒前
我睡觉的时候不困完成签到 ,获得积分10
7秒前
pericles完成签到,获得积分10
8秒前
9秒前
9秒前
cdercder应助灵巧的导师采纳,获得10
9秒前
坤坤完成签到,获得积分10
9秒前
9秒前
10秒前
sgt完成签到,获得积分10
11秒前
pericles发布了新的文献求助10
12秒前
专注雨珍发布了新的文献求助10
13秒前
动漫大师发布了新的文献求助10
14秒前
水本无忧87完成签到,获得积分10
14秒前
bc应助fxx采纳,获得20
14秒前
XD824发布了新的文献求助10
15秒前
科研通AI2S应助jlwang采纳,获得10
15秒前
15秒前
执着的一兰完成签到,获得积分10
20秒前
知北完成签到,获得积分10
20秒前
Jasper应助cookie采纳,获得10
20秒前
希望天下0贩的0应助pericles采纳,获得10
21秒前
科研通AI2S应助专注雨珍采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
TT应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
花无缺应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
asdfqwer应助科研通管家采纳,获得10
24秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330869
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763743