生物
表观遗传学
生殖系
生殖细胞
蛋白质稳态
细胞生物学
蛋白质组学
转录因子
下调和上调
遗传学
基因
作者
Yohei Hayashi,Masaru Mori,Kaori Igarashi,Keiko Tanaka,Asuka Takehara,Yumi Ito‐Matsuoka,Akio Kanai,Nobuo Yaegashi,Tomoyoshi Soga,Yasuhisa Matsui
标识
DOI:10.1093/biolre/ioaa115
摘要
Abstract Regulatory mechanisms of germline differentiation have generally been explained via the function of signaling pathways, transcription factors, and epigenetic regulation; however, little is known regarding proteomic and metabolomic regulation and their contribution to germ cell development. Here, we conducted integrated proteomic and metabolomic analyses of fetal germ cells in mice on embryonic day (E)13.5 and E18.5 and demonstrate sex- and developmental stage-dependent changes in these processes. In male germ cells, RNA processing, translation, oxidative phosphorylation, and nucleotide synthesis are dominant in E13.5 and then decline until E18.5, which corresponds to the prolonged cell division and more enhanced hyper-transcription/translation in male primordial germ cells and their subsequent repression. Tricarboxylic acid cycle and one-carbon pathway are consistently upregulated in fetal male germ cells, suggesting their involvement in epigenetic changes preceding in males. Increased protein stability and oxidative phosphorylation during female germ cell differentiation suggests an upregulation of aerobic energy metabolism, which likely contributes to the proteostasis required for oocyte maturation in subsequent stages. The features elucidated in this study shed light on the unrevealed mechanisms of germ cell development.
科研通智能强力驱动
Strongly Powered by AbleSci AI