Modeling soil loss under rainfall events using machine learning algorithms

概化理论 分水岭 支持向量机 环境科学 人工神经网络 随机森林 机器学习 过度拟合 土壤流失 水文学(农业) 土壤科学 算法 计算机科学 人工智能 数学 统计 地表径流 工程类 生态学 岩土工程 生物
作者
Yulan Chen,Jianjun Li,Ziqi Zhang,Juying Jiao,Nan Wang,Leichao Bai,Yue Liang,Xu Qian,Shijie Zhang
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:352: 120004-120004 被引量:1
标识
DOI:10.1016/j.jenvman.2023.120004
摘要

Soil loss is an environmental concern of global importance. Accurate simulation of soil loss in small watersheds is crucial for protecting the environment and implementing soil and water conservation measures. However, predicting soil loss while meeting the criteria of high precision, efficiency, and generalizability remains a challenge. Therefore, this study first used three machine learning (ML) algorithms, namely, random forest (RF), support vector machine (SVM), and artificial neural network (ANN) to develop soil loss models and predict soil loss rates (SLRs). These soil loss models were constructed using field observation data with an average SLR of 1756.48 t/km2 from rainfall events and small watersheds in the hilly-gully region of the Loess Plateau, China. During training, testing and generalizability stages, the average coefficients of determination from the RF, SVM, and ANN models were 0.903, 0.860, and 0.836, respectively. Similarly, the average Nash-Sutcliffe coefficients of efficiency from the RF, SVM and ANN models were 0.893, 0.791 and 0.814, respectively. These results indicated that MLs have superior predictive performance and generalizability, and broad prospects for predicting SLRs. This study also demonstrated that the RF model outperformed better than the SVM and ANN models. Therefore, the RF model was used to simulate the SLR of each small watershed in the Chabagou watershed. Our results showed the four-year (2017-2020) average annual SLR of the small watersheds ranged from 0.73 to 1.63 × 104 t/(km2∙a) in the Chabagou watershed. Additionally, the results also indicated the SLR of small watersheds under the rainstorm event with a 100-year recurrence interval was 4.4-51.3 times that of other rainfall events.Furthermore, this study confirmed that bare land was the predominant source of soil loss in the Chabagou watershed, followed by cropland land and grassland. This study helps to provide the theoretical basis for deploying soil and water conservation measures to realize the sustainable utilization of soil resources in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得30
刚刚
Orange应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得30
刚刚
CipherSage应助水门采纳,获得30
1秒前
小二郎应助欣慰冬亦采纳,获得10
1秒前
yyx完成签到,获得积分10
1秒前
2秒前
喜芝关注了科研通微信公众号
4秒前
hhhh完成签到,获得积分10
4秒前
6秒前
8秒前
随机昵称发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
mic完成签到,获得积分10
11秒前
创新发布了新的文献求助10
11秒前
11秒前
脑洞疼应助明钟达采纳,获得10
12秒前
13秒前
欢喜火车发布了新的文献求助10
16秒前
mic发布了新的文献求助10
16秒前
疯狂的向日葵完成签到 ,获得积分10
18秒前
18秒前
ddd发布了新的文献求助10
18秒前
清晨牛完成签到,获得积分10
19秒前
李李发布了新的文献求助10
21秒前
李健的小迷弟应助Lydia采纳,获得10
21秒前
21秒前
踏实晓啸完成签到,获得积分10
21秒前
小木得霖发布了新的文献求助10
22秒前
可爱的函函应助邹秋雨采纳,获得10
25秒前
科研通AI5应助橙子采纳,获得10
25秒前
25秒前
27秒前
NexusExplorer应助ddd采纳,获得10
27秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794759
求助须知:如何正确求助?哪些是违规求助? 3339605
关于积分的说明 10296669
捐赠科研通 3056347
什么是DOI,文献DOI怎么找? 1676961
邀请新用户注册赠送积分活动 804963
科研通“疑难数据库(出版商)”最低求助积分说明 762244