Sn, S Co-Doped Licoo2 with Low Lithium Ion Diffusion Energy Barrier and High Passivation Surface for Fast Charging Lithium Ion Batteries

钝化 锂(药物) 材料科学 离子 兴奋剂 扩散 扩散阻挡层 光电子学 化学 纳米技术 图层(电子) 物理 医学 有机化学 内分泌学 热力学
作者
Guorong Chen,Meng Zhu,Yafei Huang,Mi Lu,Alena A. Nevar,Natalia Dudko,Liyi Shi,Lei Huang,Н. В. Тарасенко,Dengsong Zhang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4402619
摘要

High-voltage lithium cobalt oxide (LCO) has been widely used in 5G smart electronics. However, maintaining the stability of high-voltage LCO structures under fast charging and discharging conditions is still a challenge that hinders its application in fast-charging lithium-ion batteries. Here, we propose a new idea of fully supported lattice network and self-passivating surface to construct a fast-charging cathode and realize high performance fast-charging lithium-ion battery. A fully supported lattice network can be achieved by one-step solid-phase sintering of Sn and S co-doping LCO, reducing the energy barrier of lithium(Li)ion transport and allowing rapid Li ion solid-state diffusion. The self-passivating surface is formed on the surface of LCO-Sn0.6 by de-solvation with solvent molecules, which significantly increases the adsorption energy of EC and LiPF6 on LCo-Sn0.6, and greatly reduces the absorption ability of EC and LiPF6 on LCo-Sn0.6 to form effective CEI membranes. The superior performance with high capacity (114 mA h g-1) under extremely fast charging conditions (20 C, 1 C=274 mA g-1) is achieved on Sn and S co-doped LCO cathode, that is, it can reach more than 60% SOC after only 2 minutes of fast charging. In situ Raman spectroscopy and in situ XRD further confirm the reversible transformation of Sn and S co-doped LCO microstructure during charge and discharge processes. These results provide a platform for the design of novel fast-charging cathode materials with fully supported lattice network and self-passivating surface, while stabilizing lattice structure and significantly enhancing ionic solid-state diffusion dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿哟发布了新的文献求助10
刚刚
刚刚
1秒前
lixiang完成签到,获得积分10
1秒前
1秒前
1秒前
wulixin发布了新的文献求助10
1秒前
麦芽糖完成签到,获得积分10
2秒前
Enid完成签到,获得积分10
3秒前
4秒前
4秒前
打打应助axiba采纳,获得10
4秒前
Mastertry发布了新的文献求助10
5秒前
姜宝龙发布了新的文献求助30
5秒前
pinkfloyd完成签到 ,获得积分10
5秒前
6秒前
6秒前
usrcu发布了新的文献求助10
7秒前
科研小虫发布了新的文献求助10
7秒前
田様应助惜曦采纳,获得10
8秒前
Hello发布了新的文献求助10
8秒前
8秒前
谦让的雅青完成签到 ,获得积分10
9秒前
9秒前
crystal完成签到,获得积分20
9秒前
圈圈完成签到,获得积分10
10秒前
李付敏发布了新的文献求助10
10秒前
小袁完成签到 ,获得积分10
12秒前
lbx完成签到,获得积分10
12秒前
12秒前
大模型应助嘿哟采纳,获得10
13秒前
研友_VZG7GZ应助日月木水采纳,获得10
13秒前
13秒前
尕辉发布了新的文献求助10
14秒前
自信易槐完成签到,获得积分10
15秒前
16秒前
16秒前
打打应助冷语采纳,获得10
17秒前
沫沫完成签到 ,获得积分10
17秒前
bkagyin应助cloudy采纳,获得10
17秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828014
求助须知:如何正确求助?哪些是违规求助? 3370280
关于积分的说明 10462497
捐赠科研通 3090257
什么是DOI,文献DOI怎么找? 1700281
邀请新用户注册赠送积分活动 817810
科研通“疑难数据库(出版商)”最低求助积分说明 770442