凝聚态物理
铁电性
反铁磁性
磁性
材料科学
极化(电化学)
克尔效应
铁磁性
多铁性
磁化
偶极子
磁矩
磁电效应
极化密度
双层
磁场
物理
电介质
化学
光电子学
物理化学
膜
非线性系统
生物化学
量子力学
作者
Yang Yue,Ying Zhao,F. X. Kong,Qinxi Liu,Yan Su,Jijun Zhao,Xue Jiang
标识
DOI:10.1021/acs.jpclett.5c02112
摘要
Interlayer sliding symmetry breaking presents a powerful technique for achieving intrinsic multiferroic coupling among magnetism, ferroelectricity, and valley polarization, thereby establishing a new paradigm for the design of multifunctional devices. First-principles calculations unveil multiferroic coupling in 2D NbSi2N4. The monolayer exhibits a ferromagnetic ground state, where valley polarization is tuned by magnetic moment reversal. The energetically stable AB/BA-stacked bilayer hosts coexisting triferroic orders: antiferromagnetism, ferrovalley, and out-of-plane ferroelectricity. The interlayer-sliding-induced AB to BA transition enables non-volatile ferroelectric bistability via polarization reversal. The magneto-optic Kerr effect (MOKE) confirms magnetoelectric coupling between sliding ferroelectricity and antiferromagnetism. Valley polarization reversal is achieved by electric-field-driven polarization switching or magnetic-field-controlled magnetization direction flipping, inducing a significant stacking-dependent anomalous valley Hall effect (AVHE) and spin currents. This establishes NbSi2N4 as an ideal platform for novel non-volatile memory and spin-valleytronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI