光降解
光催化
废水
石墨氮化碳
化学
三聚氰胺
催化作用
污染物
污水处理
核化学
环境化学
有机化学
环境工程
环境科学
作者
Phạm Thị Mai Hương,Nguyen Minh Viet,Pham Thi Thu Hoai,Sung Hoon Jung,TaeYoung Kim
标识
DOI:10.1016/j.envres.2023.116246
摘要
The presence of pharmaceutical pollutants in water has emerged as a significant public health concern due to their potential adverse impacts, including the development of antibiotic resistance. Consequently, advanced oxidation processes based on photocatalysis have garnered considerable attention for treating pharmaceutical contaminants in wastewater. In this study, graphitic carbon nitride (g-CN), a metal-free photocatalyst, was synthesized by the polymerization of melamine and assessed as a potential candidate for the photodegradation of acetaminophen (AP) and carbamazepine (CZ) in wastewater. Under alkaline conditions, g-CN demonstrated high removal efficiencies of 98.6% and 89.5% for AP and CZ, respectively. The relationships between degradation efficiency and catalyst dosage, initial pharmaceutical concentration, and photodegradation kinetics were investigated. Increasing the catalyst dose facilitated the removal of antibiotic contaminants, with an optimum catalyst dose of 0.1 g, achieving a photodegradation efficiency of 90.2% and 82.7% for AP and CZ, respectively. The synthesized photocatalyst removed over 98% of AP (1 mg/L) within 120 min, with a rate constant of 0.0321 min−1, 2.14 times faster than that of CZ. Quenching experiments revealed that g-CN was active under solar light and generated highly reactive oxidants such as hydroxyl (•OH) and superoxide (•O2−). The reuse test confirmed the good stability of g-CN for treating pharmaceuticals during three repeated cycles. Finally, the photodegradation mechanism and environmental impacts were discussed. This study presents a promising approach for treating and mitigating pharmaceutical contaminants in wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI