Sea-YOLOv5s: A UAV image-based model for detecting objects in SeaDronesSee dataset

计算机科学 人工智能 目标检测 块(置换群论) 搜救 特征(语言学) 计算机视觉 对象(语法) 模式识别(心理学) 数据挖掘 机器人 几何学 数学 语言学 哲学
作者
Xiaotian Wang,Zhizhong Pan,Ningxin He,Tiegang Gao
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (3): 3575-3586
标识
DOI:10.3233/jifs-230200
摘要

Unmanned aerial vehicles (UAVs) play a crucial role in maritime search and rescue missions, capturing images of open water scenarios and assisting in object detection. Previous object detection models have mainly focused on general scenarios. However, existing object detection models have mainly focused on general scenarios, while images captured by UAVs in vast ocean scenarios often contain numerous small objects that significantly degrade the performance of the original models. To address this challenge, we propose a model that can automatically detect objects in images captured by UAVs during maritime search and rescue missions. Our approach involves designing a new detection head with higher resolution feature maps and more comprehensive feature information to improve the detection of small objects. Additionally, we integrate Swin Transformer blocks into the small object detection head, which can improve the model’s ability to obtain abundant contextual information and thus improves the model’s ability to detect small objects. Moreover, we fuse the Convolutional Block Attention Model into the small object detection head to help the model focus on important features. Finally, we adopt a model ensemble strategy to further improve the mean average precision (mAP). Our proposed model achieves a 4.05% improvement in mAP compared to the baseline model. Furthermore, our model outperforms the previous state-of-the-art model on the SeaDronesSee dataset in terms of fewer parameters, lower training costs, and higher mAP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Riggle G发布了新的文献求助10
1秒前
zzx发布了新的文献求助10
2秒前
FashionBoy应助小志Ya采纳,获得10
2秒前
YifanWang应助小志Ya采纳,获得10
2秒前
3秒前
4秒前
hakaoo完成签到,获得积分10
4秒前
5秒前
失眠星星完成签到,获得积分20
5秒前
yuyu发布了新的文献求助10
8秒前
共享精神应助zzx采纳,获得10
8秒前
饺子没有饺子馅完成签到,获得积分10
10秒前
2024011023完成签到,获得积分20
10秒前
Giggle完成签到,获得积分10
10秒前
10秒前
11秒前
可爱完成签到,获得积分10
12秒前
xiang发布了新的文献求助10
12秒前
13秒前
柚子发布了新的文献求助10
14秒前
沧海云帆发布了新的文献求助20
15秒前
yuyu完成签到,获得积分10
16秒前
16秒前
scifff完成签到,获得积分10
16秒前
周十八发布了新的文献求助10
17秒前
18秒前
hera_jojo完成签到,获得积分10
19秒前
Hello应助丰富的硬币采纳,获得10
19秒前
bkagyin应助sober采纳,获得10
20秒前
xiang完成签到,获得积分10
20秒前
无语完成签到 ,获得积分10
21秒前
lihua发布了新的文献求助10
21秒前
22秒前
FashionBoy应助柚子采纳,获得10
22秒前
23秒前
传奇3应助贰鸟采纳,获得80
23秒前
24秒前
sssssssss发布了新的文献求助20
25秒前
25秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938894
求助须知:如何正确求助?哪些是违规求助? 3484777
关于积分的说明 11029335
捐赠科研通 3214604
什么是DOI,文献DOI怎么找? 1776772
邀请新用户注册赠送积分活动 862996
科研通“疑难数据库(出版商)”最低求助积分说明 798654