Radiomics and dosiomics-based prediction of radiotherapy-induced xerostomia in head and neck cancer patients

无线电技术 医学 头颈部癌 接收机工作特性 放射治疗 核医学 放射科 内科学
作者
Hamid Abdollahi,Tania Dehesh,Neda Abdalvand,Arman Rahmim
出处
期刊:International Journal of Radiation Biology [Taylor & Francis]
卷期号:99 (11): 1669-1683 被引量:4
标识
DOI:10.1080/09553002.2023.2214206
摘要

Dose-response modeling for radiotherapy-induced xerostomia in head and neck cancer (HN) patients is a promising frontier for personalized therapy. Feature extraction from diagnostic and therapeutic images (radiomics and dosiomics features) can be used for data-driven response modeling. The aim of this study is to develop xerostomia predictive models based on radiomics-dosiomics features.Data from the cancer imaging archive (TCIA) for 31 HN cancer patients were employed. For all patients, parotid CT radiomics features were extracted, utilizing Lasso regression for feature selection and multivariate modeling. The models were developed by selected features from pretreatment (CT1), mid-treatment (CT2), post-treatment (CT3), and delta features (ΔCT2-1, ΔCT3-1, ΔCT3-2). We also considered dosiomics features extracted from the parotid dose distribution images (Dose model). Thus, combination models of radio-dosiomics (CT + dose & ΔCT + dose) were developed. Moreover, clinical, and dose-volume histogram (DVH) models were built. Nested 10-fold cross-validation was used to assess the predictive classification of patients into those with and without xerostomia, and the area under the receiver operative characteristic curve (AUC) was used to compare the predictive power of the models. The sensitivity and accuracy of models also were obtained.In total, 59 parotids were assessed, and 13 models were developed. Our results showed three models with AUC of 0.89 as most predictive, namely ΔCT2-1 + Dose (Sensitivity 0.99, Accuracy 0.94 & Specificity 0.86), CT3 model (Sensitivity 0.96, Accuracy 0.94 & Specificity 0.86) and DVH (Sensitivity 0.93, Accuracy 0.89 & Specificity 0.84). These models were followed by Clinical (AUC 0.89, Sensitivity 0.81, Accuracy 0.97 & Specificity 0.89) and CT2 & Dose (AUC 0.86, Sensitivity 0.97, Accuracy 0.87 & Specificity 0.82). The Dose model (developed by dosiomics features only) had AUC, Sensitivity, Specificity, and Accuracy of 0.72, 0.98, 0.33, and 0.79 respectively.Quantitative features extracted from diagnostic imaging during and after radiotherapy alone or in combination with dosiomics markers obtained from dose distribution images can be used for radiotherapy response modeling, opening up prospects for personalization of therapies toward improved therapeutic outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助wjm采纳,获得10
2秒前
vv发布了新的文献求助10
3秒前
奋斗梦旋完成签到,获得积分10
3秒前
自觉的白易完成签到 ,获得积分20
3秒前
FashionBoy应助小超人采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
流萤发布了新的文献求助10
4秒前
柴胡完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
坚定迎天完成签到,获得积分10
6秒前
JamesPei应助青青采纳,获得10
6秒前
所所应助yuu采纳,获得10
7秒前
ss完成签到,获得积分20
8秒前
9秒前
9秒前
小值钱完成签到,获得积分10
9秒前
Ying发布了新的文献求助10
10秒前
CCCr发布了新的文献求助10
10秒前
JYY完成签到 ,获得积分10
10秒前
11秒前
风途完成签到 ,获得积分10
11秒前
liuqizong123发布了新的文献求助10
12秒前
柯一一应助林知鲸落采纳,获得10
12秒前
多啦a萌完成签到,获得积分10
12秒前
梁三岁发布了新的文献求助10
12秒前
Paris完成签到 ,获得积分10
12秒前
Billy应助搞怪雁风采纳,获得30
12秒前
13秒前
细心沛山发布了新的文献求助10
13秒前
lilily33完成签到,获得积分10
13秒前
研友_LJGoXn完成签到,获得积分10
14秒前
天天快乐应助ymygdz采纳,获得10
14秒前
15秒前
荼蘼发布了新的文献求助10
15秒前
今天吃什么完成签到,获得积分10
15秒前
糖炒栗子发布了新的文献求助10
15秒前
youye完成签到,获得积分10
15秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3892913
求助须知:如何正确求助?哪些是违规求助? 3435795
关于积分的说明 10795675
捐赠科研通 3161108
什么是DOI,文献DOI怎么找? 1745792
邀请新用户注册赠送积分活动 843016
科研通“疑难数据库(出版商)”最低求助积分说明 787039