Portfolio Optimization Based on Almost Second-Degree Stochastic Dominance

随机优势 学位(音乐) 文件夹 投资组合优化 随机优化 优势(遗传学) 数学 数学优化 数理经济学 经济 计量经济学 金融经济学 生物 物理 生物化学 基因 声学
作者
Chunling Luo,Piao Chen,Patrick Jaillet
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.01092
摘要

In portfolio optimization, the computational complexity of implementing almost stochastic dominance has limited its practical applications. In this study, we introduce an optimization framework aimed at identifying the optimal portfolio that outperforms a specified benchmark under almost second-degree stochastic dominance (ASSD). Our approach involves discretizing the return range and establishing both sufficient and necessary conditions for ASSD. We then propose a three-step iterative procedure: first, identifying a candidate portfolio; second, assessing its optimality; and third, refining the discretization scheme. Theoretical analysis guarantees that the portfolio identified through this iterative process improves with each iteration, ultimately converging to the optimal solution. Our empirical study, utilizing industry portfolios, demonstrates the efficacy of our approach by consistently identifying an optimal portfolio within a few iterations. Furthermore, comparative analysis against other decision criteria, such as mean-variance, second-degree stochastic dominance, and third-degree stochastic dominance, reveals that ASSD generally leads to portfolios with higher out-of-sample average excess returns but also entails increased variations and risks. This paper was accepted by Agostino Capponi, finance. Funding: C. Luo acknowledges financial support from the National Natural Science Foundation of China [Grant 72101070] and the Zhejiang Provincial Natural Science Foundation of China [Grant LY23G010001]. P. Chen acknowledges financial support from the National Natural Science Foundation of China [Grant 72401253]. P. Jaillet acknowledges financial support from the Office of Naval Research [Grant N00014-18-1-2122 and N00014-24-1-2470] and the Air Force Office of Scientific Research [Grant FA9550-23-1-0182 and Grant FA9550-23-1-0190]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.01092 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助小茗同学采纳,获得10
刚刚
1秒前
玉米发布了新的文献求助10
1秒前
1秒前
大力乌冬面关注了科研通微信公众号
1秒前
Mohammad发布了新的文献求助10
1秒前
Lee发布了新的文献求助10
1秒前
小巧凡蕾发布了新的文献求助10
2秒前
112我的发布了新的文献求助10
2秒前
2秒前
quantumcell发布了新的文献求助10
2秒前
英俊的铭应助潇洒的平松采纳,获得10
2秒前
3秒前
葛稀发布了新的文献求助10
3秒前
insissst完成签到,获得积分10
3秒前
4秒前
4秒前
有魅力哈密瓜关注了科研通微信公众号
4秒前
4秒前
柚子发布了新的文献求助10
4秒前
领导范儿应助Dasiliy采纳,获得10
5秒前
5秒前
6秒前
lbw完成签到 ,获得积分10
6秒前
6秒前
xiaoleeyu发布了新的文献求助10
6秒前
8秒前
甜皮鸭完成签到,获得积分10
8秒前
万能图书馆应助玉米采纳,获得10
8秒前
江江好完成签到,获得积分10
9秒前
9秒前
9秒前
说话要严谨完成签到,获得积分10
9秒前
112我的完成签到,获得积分10
10秒前
koito发布了新的文献求助10
10秒前
10秒前
10秒前
无味完成签到 ,获得积分10
10秒前
江江好发布了新的文献求助10
11秒前
涨知识完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4383922
求助须知:如何正确求助?哪些是违规求助? 3877467
关于积分的说明 12078303
捐赠科研通 3520734
什么是DOI,文献DOI怎么找? 1932151
邀请新用户注册赠送积分活动 973480
科研通“疑难数据库(出版商)”最低求助积分说明 871689