Physician-Friendly Machine Learning: A Case Study with Cardiovascular Disease Risk Prediction

机器学习 人工智能 分类器(UML) 计算机科学 学习分类器系统 支持向量机 多任务学习 医学 无监督学习 任务(项目管理) 管理 经济
作者
Meghana Padmanabhan,Pengyu Yuan,Govind Chada,Hien Van Nguyen
出处
期刊:Journal of Clinical Medicine [Multidisciplinary Digital Publishing Institute]
卷期号:8 (7): 1050-1050 被引量:61
标识
DOI:10.3390/jcm8071050
摘要

Machine learning is often perceived as a sophisticated technology accessible only by highly trained experts. This prevents many physicians and biologists from using this tool in their research. The goal of this paper is to eliminate this out-dated perception. We argue that the recent development of auto machine learning techniques enables biomedical researchers to quickly build competitive machine learning classifiers without requiring in-depth knowledge about the underlying algorithms. We study the case of predicting the risk of cardiovascular diseases. To support our claim, we compare auto machine learning techniques against a graduate student using several important metrics, including the total amounts of time required for building machine learning models and the final classification accuracies on unseen test datasets. In particular, the graduate student manually builds multiple machine learning classifiers and tunes their parameters for one month using scikit-learn library, which is a popular machine learning library to obtain ones that perform best on two given, publicly available datasets. We run an auto machine learning library called auto-sklearn on the same datasets. Our experiments find that automatic machine learning takes 1 h to produce classifiers that perform better than the ones built by the graduate student in one month. More importantly, building this classifier only requires a few lines of standard code. Our findings are expected to change the way physicians see machine learning and encourage wide adoption of Artificial Intelligence (AI) techniques in clinical domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花花发布了新的文献求助10
刚刚
1秒前
1秒前
英俊的铭应助Future采纳,获得10
1秒前
小Q发布了新的文献求助10
2秒前
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
CodeCraft应助尊敬的导师采纳,获得10
8秒前
kk发布了新的文献求助10
8秒前
丁丁慧发布了新的文献求助10
8秒前
Cindy发布了新的文献求助10
10秒前
10秒前
11秒前
青花菜鱼得啦完成签到 ,获得积分10
14秒前
所所应助melo采纳,获得10
15秒前
CodeCraft应助你是我的唯一采纳,获得10
16秒前
乐乐应助丁丁慧采纳,获得10
16秒前
李健应助kk采纳,获得10
17秒前
17秒前
xumengyu发布了新的文献求助30
18秒前
18秒前
开朗阁发布了新的文献求助10
23秒前
DR-JHan发布了新的文献求助10
23秒前
潘宇霜完成签到,获得积分10
25秒前
bolin完成签到,获得积分10
25秒前
25秒前
28秒前
28秒前
香蕉觅云应助潘宇霜采纳,获得10
29秒前
Zero140发布了新的文献求助10
30秒前
31秒前
31秒前
小橙子应助宋卜宁采纳,获得30
32秒前
贝尔摩德发布了新的文献求助10
32秒前
痴情的静柏完成签到,获得积分10
33秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4109721
求助须知:如何正确求助?哪些是违规求助? 3648056
关于积分的说明 11555522
捐赠科研通 3353801
什么是DOI,文献DOI怎么找? 1842442
邀请新用户注册赠送积分活动 908829
科研通“疑难数据库(出版商)”最低求助积分说明 825745