Physician-Friendly Machine Learning: A Case Study with Cardiovascular Disease Risk Prediction

机器学习 人工智能 分类器(UML) 计算机科学 学习分类器系统 支持向量机 多任务学习 医学 无监督学习 任务(项目管理) 管理 经济
作者
Meghana Padmanabhan,Pengyu Yuan,Govind Chada,Hien Van Nguyen
出处
期刊:Journal of Clinical Medicine [Multidisciplinary Digital Publishing Institute]
卷期号:8 (7): 1050-1050 被引量:61
标识
DOI:10.3390/jcm8071050
摘要

Machine learning is often perceived as a sophisticated technology accessible only by highly trained experts. This prevents many physicians and biologists from using this tool in their research. The goal of this paper is to eliminate this out-dated perception. We argue that the recent development of auto machine learning techniques enables biomedical researchers to quickly build competitive machine learning classifiers without requiring in-depth knowledge about the underlying algorithms. We study the case of predicting the risk of cardiovascular diseases. To support our claim, we compare auto machine learning techniques against a graduate student using several important metrics, including the total amounts of time required for building machine learning models and the final classification accuracies on unseen test datasets. In particular, the graduate student manually builds multiple machine learning classifiers and tunes their parameters for one month using scikit-learn library, which is a popular machine learning library to obtain ones that perform best on two given, publicly available datasets. We run an auto machine learning library called auto-sklearn on the same datasets. Our experiments find that automatic machine learning takes 1 h to produce classifiers that perform better than the ones built by the graduate student in one month. More importantly, building this classifier only requires a few lines of standard code. Our findings are expected to change the way physicians see machine learning and encourage wide adoption of Artificial Intelligence (AI) techniques in clinical domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助一见喜采纳,获得10
1秒前
1秒前
2秒前
所所应助yellow采纳,获得10
2秒前
zzzzzy发布了新的文献求助10
2秒前
szh发布了新的文献求助10
2秒前
3秒前
丘比特应助zhengzh采纳,获得10
3秒前
科研通AI5应助123456789采纳,获得10
4秒前
4秒前
4秒前
林歌ovo发布了新的文献求助10
4秒前
TTTT完成签到,获得积分20
4秒前
123完成签到,获得积分10
5秒前
doggywong发布了新的文献求助10
5秒前
BoBo应助大气的妙旋采纳,获得20
5秒前
大雄12138完成签到,获得积分10
5秒前
5114发布了新的文献求助10
6秒前
6秒前
包容的小松鼠完成签到 ,获得积分10
7秒前
7秒前
wujiao发布了新的文献求助10
7秒前
TTTT发布了新的文献求助10
7秒前
可靠招牌发布了新的文献求助10
8秒前
Lsy完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
hue628发布了新的文献求助10
9秒前
沃尔特怀特完成签到 ,获得积分10
10秒前
10秒前
深情安青应助日照金峰采纳,获得10
10秒前
wyy1990711发布了新的文献求助30
11秒前
一见喜发布了新的文献求助10
12秒前
静汉完成签到,获得积分10
13秒前
张雯思发布了新的文献求助10
13秒前
14秒前
Orange应助玩是罪恶的采纳,获得10
14秒前
15秒前
123456789发布了新的文献求助10
15秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547686
求助须知:如何正确求助?哪些是违规求助? 3978585
关于积分的说明 12319234
捐赠科研通 3647114
什么是DOI,文献DOI怎么找? 2008560
邀请新用户注册赠送积分活动 1044062
科研通“疑难数据库(出版商)”最低求助积分说明 932684