FLAME: Taming Backdoors in Federated Learning (Extended Version 1)

后门 计算机科学 对手 噪音(视频) 过程(计算) 聚类分析 机器学习 人工智能 入侵检测系统 差别隐私 数据挖掘 计算机安全 图像(数学) 操作系统
作者
Thien Duc Nguyen,Phillip Rieger,Huili Chen,Hossein Yalame,Helen Möllering,Hossein Fereidooni,Samuel Marchal,Markus Miettinen,Azalia Mirhoseini,Shaza Zeitouni,Farinaz Koushanfar,Ahmad‐Reza Sadeghi,Thomas Schneider
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2101.02281
摘要

Federated Learning (FL) is a collaborative machine learning approach allowing participants to jointly train a model without having to share their private, potentially sensitive local datasets with others. Despite its benefits, FL is vulnerable to backdoor attacks, in which an adversary injects manipulated model updates into the model aggregation process so that the resulting model will provide targeted false predictions for specific adversary-chosen inputs. Proposed defenses against backdoor attacks based on detecting and filtering out malicious model updates consider only very specific and limited attacker models, whereas defenses based on differential privacy-inspired noise injection significantly deteriorate the benign performance of the aggregated model. To address these deficiencies, we introduce FLAME, a defense framework that estimates the sufficient amount of noise to be injected to ensure the elimination of backdoors while maintaining the model performance. To minimize the required amount of noise, FLAME uses a model clustering and weight clipping approach. Our evaluation of FLAME on several datasets stemming from application areas including image classification, word prediction, and IoT intrusion detection demonstrates that FLAME removes backdoors effectively with a negligible impact on the benign performance of the models. Furthermore, following the considerable attention that our research has received after its presentation at USENIX SEC 2022, FLAME has become the subject of numerous investigations proposing diverse attack methodologies in an attempt to circumvent it. As a response to these endeavors, we provide a comprehensive analysis of these attempts. Our findings show that these papers (e.g., 3DFed [36]) have not fully comprehended nor correctly employed the fundamental principles underlying FLAME, i.e., our defense mechanism effectively repels these attempted attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
祯果粒发布了新的文献求助20
1秒前
momo完成签到,获得积分10
1秒前
Voloid发布了新的文献求助10
1秒前
illusion2019应助玉米采纳,获得30
2秒前
2秒前
顾矜应助欢喜的冬亦采纳,获得10
2秒前
Lucy完成签到,获得积分10
3秒前
4秒前
From-ZTT完成签到,获得积分10
4秒前
Little Mianmian完成签到 ,获得积分20
4秒前
CC完成签到 ,获得积分10
4秒前
曼荷菠萝完成签到,获得积分20
5秒前
5秒前
笑点低的小天鹅完成签到,获得积分10
5秒前
Jasper应助冰冰冰采纳,获得10
5秒前
溪夕er完成签到,获得积分10
6秒前
连秋发布了新的文献求助10
6秒前
Dr桃桃发布了新的文献求助30
6秒前
Voloid完成签到,获得积分10
7秒前
Yvoone完成签到,获得积分10
7秒前
7秒前
OK发布了新的文献求助10
9秒前
regina完成签到,获得积分10
9秒前
不能没有科研完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
单纯梦柏完成签到,获得积分10
12秒前
miaomiao发布了新的文献求助10
12秒前
12秒前
12秒前
jason发布了新的文献求助10
12秒前
ccCherub完成签到,获得积分10
13秒前
zyz完成签到,获得积分10
14秒前
14秒前
大模型应助竭缘采纳,获得10
14秒前
NexusExplorer应助cyy1226采纳,获得10
15秒前
16秒前
qitan完成签到,获得积分10
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804427
求助须知:如何正确求助?哪些是违规求助? 3349330
关于积分的说明 10343291
捐赠科研通 3065325
什么是DOI,文献DOI怎么找? 1683064
邀请新用户注册赠送积分活动 808683
科研通“疑难数据库(出版商)”最低求助积分说明 764650