Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts

计算机科学 任务(项目管理) 初始化 机器学习 人工智能 水准点(测量) 多任务学习 任务分析 基线(sea) 人工神经网络 海洋学 管理 大地测量学 地质学 经济 程序设计语言 地理
作者
Jiaqi Ma,Zhe Zhao,Xinyang Yi,Jilin Chen,Lichan Hong,Ed H. Chi
标识
DOI:10.1145/3219819.3220007
摘要

Neural-based multi-task learning has been successfully used in many real-world large-scale applications such as recommendation systems. For example, in movie recommendations, beyond providing users movies which they tend to purchase and watch, the system might also optimize for users liking the movies afterwards. With multi-task learning, we aim to build a single model that learns these multiple goals and tasks simultaneously. However, the prediction quality of commonly used multi-task models is often sensitive to the relationships between tasks. It is therefore important to study the modeling tradeoffs between task-specific objectives and inter-task relationships. In this work, we propose a novel multi-task learning approach, Multi-gate Mixture-of-Experts (MMoE), which explicitly learns to model task relationships from data. We adapt the Mixture-of-Experts (MoE) structure to multi-task learning by sharing the expert submodels across all tasks, while also having a gating network trained to optimize each task. To validate our approach on data with different levels of task relatedness, we first apply it to a synthetic dataset where we control the task relatedness. We show that the proposed approach performs better than baseline methods when the tasks are less related. We also show that the MMoE structure results in an additional trainability benefit, depending on different levels of randomness in the training data and model initialization. Furthermore, we demonstrate the performance improvements by MMoE on real tasks including a binary classification benchmark, and a large-scale content recommendation system at Google.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Yyyang采纳,获得10
1秒前
yyyyy语言发布了新的文献求助10
2秒前
3秒前
明理的忆之完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
噗咔咔ya完成签到 ,获得积分10
4秒前
小小怪国王完成签到,获得积分10
5秒前
斗牛的番茄完成签到 ,获得积分10
5秒前
6秒前
9秒前
orixero应助yyyyy语言采纳,获得10
9秒前
9秒前
10秒前
沙力VAN完成签到,获得积分10
10秒前
小曹完成签到,获得积分10
11秒前
王鸿杰关注了科研通微信公众号
11秒前
浮游应助苗明超采纳,获得10
11秒前
北北发布了新的文献求助10
12秒前
林北子完成签到,获得积分10
13秒前
浮游应助刘兆亮采纳,获得10
13秒前
13秒前
xiaofeifantasy应助任磊采纳,获得10
13秒前
l刘慧芳发布了新的文献求助10
15秒前
科目三应助小朱马采纳,获得10
15秒前
15秒前
16秒前
17秒前
胡萝卜发布了新的文献求助10
18秒前
桥豆麻袋完成签到,获得积分10
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
xdc发布了新的文献求助10
21秒前
21秒前
别发呆快学习完成签到,获得积分10
21秒前
wanci应助Nuyoah采纳,获得10
22秒前
华仔应助胡萝卜采纳,获得10
22秒前
23秒前
微风完成签到,获得积分10
24秒前
珊妮完成签到,获得积分10
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142300
求助须知:如何正确求助?哪些是违规求助? 4340566
关于积分的说明 13517807
捐赠科研通 4180482
什么是DOI,文献DOI怎么找? 2292477
邀请新用户注册赠送积分活动 1293105
关于科研通互助平台的介绍 1235621