Feature Normalization for Improving the Performance of Sleep Apnea Detection System

不可用 规范化(社会学) 计算机科学 睡眠呼吸暂停 人工智能 心率变异性 午睡 支持向量机 模式识别(心理学) 特征提取 呼吸暂停 特征向量 语音识别 机器学习 医学 心率 统计 心脏病学 数学 内科学 血压 神经科学 社会学 人类学 生物
作者
G B Mrudula,H. Haritha,C. Santhosh Kumar,Anand Kumar,Siby Gopinath
标识
DOI:10.1109/indicon45594.2018.8987009
摘要

Sleep apnea is a common sleep disorder characterized by intermittent cessation of breath during sleep. Diagnosis of this disorder requires, prolonged and expensive sleep study test. The unavailability of such high-end diagnosis setup in rural areas, makes such disorders undiagonised. This paper introduces a low cost system which can detect sleep apnea by a rural health worker independent of sleep state, using electrocardiography (ECG) and respiratory effort signal (RES). The baseline-system uses statistical features derived from heart rate variability (HRV) and respiratory rate variability (RRV) data, with SVM used as a backend classifier. The feature vectors extracted from ECG and RES, carries patient and stage specific variations that does not contain information about apnea condition. Any effort to minimize these variations on the feature vectors can improve the performance. We explore two approaches to minimize these variations in the input features to improve the system performance. In the first approach we used nuisance attribute projection (NAP) in which we consider these variations as nuisance, and removed the components that are adversely effecting the performance of the classifier. Individual systems that are patient and stage independent were developed up on performing NAP algorithm and we got 81.25% sensitivity, 68.75% specificity and an overall accuracy of 75% absolute. Further using covariance normalization (CVN) we obtained an improvement of 16% absolute in the overall accuracy compared to the baseline-system. We further combined the NAP and CVN, and did not find any encouraging results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huhdcid发布了新的文献求助30
1秒前
wanci应助lucas采纳,获得10
1秒前
GingerF应助xzn1123采纳,获得50
1秒前
dddd完成签到,获得积分10
1秒前
2秒前
自然幻竹发布了新的文献求助10
2秒前
缓慢手机完成签到,获得积分10
2秒前
一二完成签到,获得积分10
2秒前
木子完成签到,获得积分10
3秒前
AN发布了新的文献求助10
3秒前
看不懂发布了新的文献求助10
3秒前
橘柚2456904942完成签到,获得积分10
4秒前
5秒前
ljy完成签到,获得积分10
5秒前
5秒前
闫栋发布了新的文献求助10
6秒前
Estelle完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
呵呵哒完成签到,获得积分10
7秒前
小梦完成签到,获得积分10
7秒前
8秒前
YM发布了新的文献求助10
8秒前
8秒前
Akim应助内向的冰棍采纳,获得10
9秒前
9秒前
三伏天完成签到,获得积分10
9秒前
9秒前
10秒前
航航完成签到,获得积分10
10秒前
AN完成签到,获得积分10
10秒前
11秒前
哎呦喂完成签到,获得积分10
11秒前
11秒前
你在看什么28完成签到 ,获得积分10
11秒前
coconut完成签到,获得积分10
11秒前
浮游应助淡定的勒采纳,获得10
11秒前
雍凡白发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439