Material informatics for uranium-bearing equiatomic disordered solid solution alloys

材料科学 组分(热力学) 固溶体 相(物质) 工作(物理) 理论(学习稳定性) 热力学 生物系统 计算机科学 冶金 机器学习 物理 量子力学 生物
作者
H. Huang,Xin Wang,Jie Shi,Huogen Huang,Yawen Zhao,Haiyan Xu,Pengguo Zhang,Zhong Long,Bin Bai,Tao Fa,Ce Ma,Fangfang Li,Daqiao Meng,Xiaoqing Li,Stephan Schönecker,Levente Vitos
出处
期刊:Materials today communications [Elsevier BV]
卷期号:29: 102960-102960 被引量:3
标识
DOI:10.1016/j.mtcomm.2021.102960
摘要

Near-equiatomic, multi-component alloys with disordered solid solution phase (DSSP) are associated with outstanding performance in phase stability, mechanical properties and irradiation resistance, and may provide a feasible solution for developing novel uranium-based alloys with better fuel capacity. In this work, we build a machine learning (ML) model of disordered solid solution alloys (DSSAs) based on about 6000 known multi-component alloys and several materials descriptors to efficiently predict the DSSAs formation ability. To fully optimize the ML model, we develop a multi-algorithm cross-verification approach in combination with the SHapley Additive exPlanations value (SHAP value). We find that the ΔSC, Λ, Φs, γ and 1∕Ω, corresponding to the former two Hume − Rothery (H − R) rules, are the most important materials descriptors affecting DSSAs formation ability. When the ML model is applied to the 375 uranium-bearing DSSAs, 190 of them are predicted to be the DSSAs never known before. 20 of these alloys were randomly synthesized and characterized. Our predictions are in-line with experiments with 3 inconsistent cases, suggesting that our strategy offers a fast and accurate way to predict novel multi-component alloys with high DSSAs formation ability. These findings shed considerable light on the mapping between the material descriptors and DSSAs formation ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
维生素完成签到,获得积分10
2秒前
神勇的砖头完成签到,获得积分10
2秒前
纯真皮卡丘完成签到 ,获得积分10
3秒前
ZXB完成签到,获得积分10
3秒前
123456完成签到 ,获得积分10
3秒前
4秒前
Imogen关注了科研通微信公众号
6秒前
mellow完成签到,获得积分10
6秒前
nnnn发布了新的文献求助10
6秒前
7秒前
ljkshr完成签到,获得积分10
8秒前
西瘡发布了新的文献求助10
8秒前
8秒前
guochrn完成签到,获得积分10
11秒前
无奈世立完成签到,获得积分10
11秒前
温暖砖头发布了新的文献求助10
11秒前
云栖发布了新的文献求助10
12秒前
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得30
17秒前
miaowuuuuuuu完成签到 ,获得积分10
17秒前
zbclzf完成签到,获得积分10
19秒前
jenningseastera应助AA采纳,获得10
20秒前
21秒前
21秒前
隐形曼青应助whh123采纳,获得10
22秒前
nancy发布了新的文献求助10
22秒前
23秒前
袁大头发布了新的文献求助10
25秒前
remoon1104完成签到,获得积分10
25秒前
26秒前
quickerrun应助小M采纳,获得30
26秒前
zambajia完成签到,获得积分10
28秒前
wen发布了新的文献求助10
30秒前
伶俐安萱完成签到,获得积分10
30秒前
33秒前
AA完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779530
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220974
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522